1,690 research outputs found

    Inhomogeneous electronic structure probed by spin-echo experiments in the electron doped high-Tc superconductor Pr_{1.85}Ce_{0.15}CuO_{4-y}

    Full text link
    63Cu nuclear magnetic resonance (NMR) spin-echo decay rate (T_2^{-1}) measurements are reported for the normal and superconducting states of a single crystal of Pr_{1.85}Ce_{0.15}CuO_{4-y} (PCCO) in a magnetic field B_0=9T over the temperature range 2K<T<200K. The spin-echo decay rate is temperature-dependent for T<55K, and has a substantial dependence on the radio frequency (rf) pulse parameters below T~25K. This dependence indicates that T_2^{-1} is strongly effected by a local magnetic field distribution that can be modified by the rf pulses, including ones that are not at the nuclear Larmor frequency. The low-temperature results are consistent with the formation of a static inhomogeneous electronic structure that couples to the rf fields of the pulses.Comment: 4 pages, 4 figure

    Theoretical current-voltage characteristics of ferroelectric tunnel junctions

    Get PDF
    We present the concept of ferroelectric tunnel junctions (FTJs). These junctions consist of two metal electrodes separated by a nanometer-thick ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed under the assumption that the direct electron tunneling represents the dominant conduction mechanism. First, the influence of converse piezoelectric effect inherent in ferroelectric materials on the tunnel current is described. The calculations show that the lattice strains of piezoelectric origin modify the current-voltage relationship owing to strain-induced changes of the barrier thickness, electron effective mass, and position of the conduction-band edge. Remarkably, the conductance minimum becomes shifted from zero voltage due to the piezoelectric effect, and a strain-related resistive switching takes place after the polarization reversal in a ferroelectric barrier. Second, we analyze the influence of the internal electric field arising due to imperfect screening of polarization charges by electrons in metal electrodes. It is shown that, for asymmetric FTJs, this depolarizing-field effect also leads to a considerable change of the barrier resistance after the polarization reversal. However, the symmetry of the resulting current-voltage loop is different from that characteristic of the strain-related resistive switching. The crossover from one to another type of the hysteretic curve, which accompanies the increase of FTJ asymmetry, is described taking into account both the strain and depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar top and bottom electrodes are preferable for the non-volatile memory applications because of a larger resistance on/off ratio.Comment: 14 pages, 8 figure

    The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM

    Get PDF
    The activation of ATR-ATRIP in response to double-stranded DNA breaks (DSBs) depends upon ATM in human cells and Xenopus egg extracts. One important aspect of this dependency involves regulation of TopBP1 by ATM. In Xenopus egg extracts, ATM associates with TopBP1 and thereupon phosphorylates it on S1131. This phosphorylation enhances the capacity of TopBP1 to activate the ATR-ATRIP complex. We show that TopBP1 also interacts with the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. This interaction involves the Nbs1 subunit of the complex. ATM can no longer interact with TopBP1 in Nbs1-depleted egg extracts, which suggests that the MRN complex helps to bridge ATM and TopBP1 together. The association between TopBP1 and Nbs1 involves the first pair of BRCT repeats in TopBP1. In addition, the two tandem BRCT repeats of Nbs1 are required for this binding. Functional studies with mutated forms of TopBP1 and Nbs1 suggested that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. These findings suggest that the MRN complex is a crucial mediator in the process whereby ATM promotes the TopBP1-dependent activation of ATR-ATRIP in response to DSBs

    Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning

    Get PDF
    By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM) code PROMETHEUS, we study the properties of a convective oxygen burning shell in a SN 1987A progenitor star prior to collapse. The convection is too heterogeneous and dynamic to be well approximated by one-dimensional diffusion-like algorithms which have previously been used for this epoch. Qualitatively new phenomena are seen. The simulations are two-dimensional, with good resolution in radius and angle, and use a large (90-degree) slice centered at the equator. The microphysics and the initial model were carefully treated. Many of the qualitative features of previous multi-dimensional simulations of convection are seen, including large kinetic and acoustic energy fluxes, which are not accounted for by mixing length theory. Small but significant amounts of carbon-12 are mixed non-uniformly into the oxygen burning convection zone, resulting in hot spots of nuclear energy production which are more than an order of magnitude more energetic than the oxygen flame itself. Density perturbations (up to 8%) occur at the `edges' of the convective zone and are the result of gravity waves generated by interaction of penetrating flows into the stable region. Perturbations of temperature and electron fraction at the base of the convective zone are of sufficient magnitude to create angular inhomogeneities in explosive nucleosynthesis products, and need to be included in quantitative estimates of yields. Combined with the plume-like velocity structure arising from convection, the perturbations will contribute to the mixing of nickel-56 throughout supernovae envelopes. Runs of different resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see http://www.astrophysics.arizona.edu/movies.html Submitted to the Astrophysical Journa

    Ginzburg-Landau Analysis for the Antiferromagnetic Order in the Fulde-Ferrell-Larkin-Ovchinnikov Superconductor

    Full text link
    Incommensurate antiferromangetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductor is investigated on the basis of the Ginzburg-Landau theory. We formulate the two component Ginzburg-Landau model to discuss two degenerate incommensurate AFM states in the tetragonal crystal structure. Owing to the broken translation symmetry in the FFLO state, a multiple phase diagram of single-q phase and double-q phase is obtained under the magnetic field along [100] or [010] direction. Magnetic properties in each phase are investigated and compared with the neutron scattering and NMR measurements for a heavy fermion superconductor CeCoIn_5. An ultrasonic measurement is proposed for a future experimental study to identify the AFM-FFLO state. The field orientation dependence of the AFM order in CeCoIn_5 is discussed.Comment: 8 page

    Antiferromagnetic Order and \pi-triplet Pairing in the Fulde-Ferrell-Larkin-Ovchinnikov State

    Full text link
    The antiferromagnetic Fulde-Ferrell-Larkin-Ovchinnikov (AFM-FFLO) state of coexisting d-wave FFLO superconductivity and incommensurate AFM order is studied on the basis of Bogoliubov-de Gennes (BdG) equations. We show that the incommensurate AFM order is stabilized in the FFLO state by the appearance of the Andreev bound state localized around the zeros of the FFLO order parameter. The AFM-FFLO state is further enhanced by the induced \pi-triplet superconductivity (pair density wave). The AFM order occurs in the FFLO state even when it is neither stable in the normal state nor in the BCS state. The order parameters of the AFM order, d-wave superconductivity, and \pi-triplet pairing are investigated by focusing on their spatial structures. Roles of the spin fluctuations beyond the BdG equations are discussed. Their relevance to the high-field superconducting phase of CeCoIn_5 is discussed.Comment: Typos are fixed. Published versio

    Switching of magnetic domains reveals evidence for spatially inhomogeneous superconductivity

    Full text link
    The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity, where magnetic correlations fundamentally affect the underlying symmetry and generate new physical properties. The superconducting wave-function in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density wave (SDW) order. Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave (PDW) in CeCoIn5. We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeCoIn5 thus represents an example where spatially modulated superconductivity is associated with SDW order

    Electrostatic potential in a superconductor

    Full text link
    The electrostatic potential in a superconductor is studied. To this end Bardeen's extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations - the Maxwell equation for the vector potential, the Schroedinger equation for the wave function and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in Niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed.Comment: 19 pages, 11 figure

    Charge Induced Vortex Lattice Instability

    Full text link
    It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for, high temperature superconductors.\cite{kho95,bla96} Hall effect\cite{hag91} and nuclear magnetic resonance (NMR) experiments\cite{kum01} suggest the existence of vortex charging, but the effects are small and the interpretation controversial. Here we show that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core. Our NMR measurements of the magnetic fields generated by vortices in Bi2_{2}Sr2_{2}CaCu2_{2}O8+y_{8+y} single crystals\cite{che07} provide evidence for an electrostatically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2\mathbf{\sim 2}x103e\mathbf{10^{-3} e}, depending on doping, in line with theoretical estimates.\cite{kho95,kna05}Comment: to appear in Nature Physics; 6 pages, 7 figure
    corecore