1,967 research outputs found

    High-Temperature, Low-Cycle Fatigue Behavior of Tantalum

    Get PDF
    High temperature, low cycle fatigue tests of tantalum in inert argon atmospher

    Learning the language of school history: the role of linguistics in mapping the writing demands of the secondary school curriculum

    Get PDF
    This paper reports on a research study which used the tools of functional linguistics to illuminate the writing requirements of the history curriculum in the context of Australian secondary schools. It shows how the resulting linguistic description was integrated into a sequence of teaching and learning activities through collaboration between linguist specialists and content/pedagogic specialists. These activities were designed to facilitate students’ writing skills whilst simultaneously developing their historical knowledge. An independent evaluation of the approach pointed to positive changes in teachers’ attitudes and behaviours regarding the role of language in learning history. Equally, students’ writing improved, particularly in terms of its organisation and structure

    Study to determine experimentally the feasibility of new methods for improving thermal conductance of mechanical joints in a vacuum Summary research report, 8 Apr. - 30 Sep. 1966

    Get PDF
    Surface-plateauing techniques, and flexible surface membranes for improved thermal conductance of mechanical joints in vacuu

    Spatial fluctuations in transient creep deformation

    Full text link
    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by Digital Image Correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power-law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases - the spatially averaged creep rate obeys the Andrade law ϵtt0.7\epsilon_t \sim t^{-0.7}, while the time dependence of the spatial fluctuations of the local creep rates is given by Δϵtt0.5\Delta \epsilon_t \sim t^{-0.5}. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2dd Linear Interface Model or the quenched Edwards-Wilkinson equation.Comment: 27 pages, 18 figure

    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic

    Get PDF
    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic (March 25 - 27, 2018 -- The University of New Hampshire) paired two of NSF\u27s 10 Big Ideas: Navigating the New Arctic and Growing Convergence Research at NSF. During this event, participants assessed economic, environmental, and social impacts of Arctic change on New England and established convergence research initiatives to prepare for, adapt to, and respond to these effects. Shipping routes through an ice-free Northwest Passage in combination with modifications to ocean circulation and regional climate patterns linked to Arctic ice melt will affect trade, fisheries, tourism, coastal ecology, air and water quality, animal migration, and demographics not only in the Arctic but also in lower latitude coastal regions such as New England. With profound changes on the horizon, this is a critical opportunity for New England to prepare for uncertain yet inevitable economic and environmental impacts of Arctic change

    The Osmium Isotope Signature of Phanerozoic Large Igneous Provinces

    Get PDF
    The emplacement of Large Igneous Provinces (LIPs) throughout the Phanerozoic Eon introduced vast quantities of mafic rocks to the Earth's surface, which were subsequently weathered into the oceans. Osmium isotope data can be used to track these LIP-related weathering fluxes, providing a global fingerprint of the timing and magnitude of LIP emplacement, and guiding assessments of the impact of these events on ocean biogeochemistry and the regulation of the global climate system. Sedimentary Os isotope records spanning late Phanerozoic LIP events are reviewed herein and new observations from Eocene hyperthermal event ETM-2 are presented. While Os isotope stratigraphy can provide major constraints on LIP activity in the geological record, it cannot always distinguish whether the extrusive activity was subaerial or submarine. The utility of osmium isotopes as a global tracer of past volcanism may be enhanced when used alongside proxies such as mercury concentrations, which may be more diagnostic of the style of individual episodes of LIP emplacement. Hitherto, only a few high-resolution Os-isotope records across Phanerozoic LIPs have effectively exploited the short oceanic residence time of Os. Future high-resolution studies across suitable, well-preserved stratigraphic records will significantly improve our understanding of the nature, progression, and consequences of LIP emplacement

    Dibaryons with Strangeness: their Weak Nonleptonic Decay using SU(3) Symmetry and how to find them in Relativistic Heavy-Ion Collisions

    Get PDF
    Weak SU(3) symmetry is successfully applied to the weak hadronic decay amplitudes of octet hyperons. Weak nonmesonic and mesonic decays of various dibaryons with strangeness, their dominant decay modes, and lifetimes are calculated. Production estimates for BNL's Relativistic Heavy-Ion Collider are presented employing wave function coalescence. Signals for detecting strange dibaryon states in heavy-ion collisions and revealing information about the unknown hyperon-hyperon interactions are outlined.Comment: 4 pages, 2 figures, uses RevTeX, discussion about the model of the weak decay and experimental signals extended, references update
    corecore