92 research outputs found

    Scotland’s biodiversity progress to 2020 Aichi Targets:Conserving genetic diversity- development of a national approach for addressing Aichi Biodiversity Target 13 that includes wild species

    Get PDF
    Aichi Target 13 (T13) focuses on the conservation of genetic diversity. •Major challenges in implementing T13 are that the type of genetic diversity to conserve is not clearly defined, and that key issues in genetic conservation vary across different sectors (e.g., forestry vs agriculture vs other species of socio-economic importance). •In Scotland and the UK more widely, baseline mechanisms are well established for assessing and reporting on genetic diversity in species of agricultural importance (e.g., rare livestock breeds, crop wild relatives), and a methodology has been established for ornamental plants. •A new UK Strategy for Forest Genetics Resources was launched in 2019, creating a framework for linking forest trees into T13 reporting. •However, there is no clear strategy to deal with ‘other species of socio-economic importance’ in Scotland, the UK or indeed elsewhere, and addressing this gap is the major focus of this report. •There is a lack of guidance for identifying focal species of socio-economic importance, and no clear mechanism for addressing T13 for these species once they have been identified. •To address this, we have identified a set of criteria for defining terrestrial and freshwater species of socio-economic importance in Scotland, and selected an initial list of 26 species. •The criteria applied were: -National conservation priority wild species. -Species of national cultural importance. -Species providing key ecosystem services. -Species of importance for wild harvesting (food and medicine). -Economically important game species. •We then developed a simple, readily applicable scorecard method for assessing risks to the conservation of genetic diversity in these species. •The scorecard approach is not dependent on prior genetic knowledge, and instead uses structured expert opinion assessments of whether: -Demographic declines are likely to lead to loss of genetic diversity (genetic erosion). -Hybridisation is likely to lead to undesirable replacement of genetic diversity. -Restrictions to regeneration/turnover are likely to impede evolutionary change. •For plant species where seed-banking is a viable mechanism for holding genetic resources ex situ,we also report on the representativeness of these ex situ collections. •Overall, this scorecard provides a mechanism for incorporating ‘other species of socio-economic importance’ into T13 actions and reporting. •Furthermore, its application is not restricted to Aichi T13 as the approach is designed as a generic scorecard for genetic diversity. It is thus relevant to post-2020 CBD targets focusing on genetic diversity. •Future priorities include: -Extension to other species of socio-economic, commercial and cultural importance (with the inclusion of marine species being a particularly high priority). -Harmonising genetic conservation strategies between sectors (drawing on commonalities), whilst minimising disruption of existing well-established methodologies within sectors. -Greater incorporation of genomic data into monitoring genetic diversity (particularly in the agricultural and forestry sectors where data availability is potentially high)

    Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments

    Get PDF
    The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available

    Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish

    Full text link

    Sertoli cells maintain leydig cell number and peritubular myoid cell activity in the adult mouse testis

    Get PDF
    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health

    Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring

    Get PDF

    Embryonic Gonadal and Sexual Organ Development in a Small Viviparous Skink, Niveoscincus ocellatus

    No full text
    The majority of research into the timing of gonad differentiation (and sex determination) in reptiles has focused on oviparous species. This is largely because: (1) most reptiles are oviparous; (2) it is easier to manipulate embryonic developmental conditions (e.g., temperature) of eggs than oviductal embryos and (3) modes of sex determination in oviparous taxa were thought to be more diverse since viviparity and environmental sex determination (ESD)/temperaturedependent sex determination (TSD) were considered incompatible. However, recent evidence suggests the two may well be compatible biological attributes, opening potential new lines of enquiry into the evolution and maintenance of sex determination. Unfortunately, the baseline information on embryonic development in viviparous species is lacking and information on gonad differentiation and sexual organ development is almost non-existent. Here we present an embryonic morphological development table (10 stages), the sequence of gonad differentiation and sexual organ development for the viviparous spotted snow skink (Niveoscincus ocellatus). Gonad differentiation in this species is similar to other reptilian species. Initially, the gonads are indifferent and both male and female accessory ducts are present. During stage 2, in the middle third of development, differentiation begins as the inner medulla regresses and the cortex thickens signaling ovary development, while the opposite occurs in testis formation. At this point, the Mu¨llerian (female reproductive) duct regresses in males until it is lost (stage 6), while females retain both ducts until after birth. In the later stages of testis development, interstitial tissue forms in the medulla corresponding to maximum development of the hemipenes in males and the corresponding regression in the females
    corecore