5,525 research outputs found

    Taking A Stand: The Effects Of Standing Desks On Task Performance And Engagement

    Get PDF
    Time spent sitting is associated with negative health outcomes, motivating some individuals to adopt standing desk workstations. This study represents the first investigation of the effects of standing desk use on reading comprehension and creativity. In a counterbalanced, within-subjects design, 96 participants completed reading comprehension and creativity tasks while both sitting and standing. Participants self-reported their mood during the tasks and also responded to measures of expended effort and task difficulty. In addition, participants indicated whether they expected that they would perform better on work-relevant tasks while sitting or standing. Despite participants’ beliefs that they would perform worse on most tasks while standing, body position did not affect reading comprehension or creativity performance, nor did it affect perceptions of effort or difficulty. Mood was also unaffected by position, with a few exceptions: Participants exhibited greater task engagement (i.e., interest, enthusiasm, and alertness) and less comfort while standing rather than sitting. In sum, performance and psychological experience as related to task completion were nearly entirely uninfluenced by acute (~30-min) standing desk use. View Full-Tex

    A series solution and a fast algorithm for the inversion of the spherical mean Radon transform

    Full text link
    An explicit series solution is proposed for the inversion of the spherical mean Radon transform. Such an inversion is required in problems of thermo- and photo- acoustic tomography. Closed-form inversion formulae are currently known only for the case when the centers of the integration spheres lie on a sphere surrounding the support of the unknown function, or on certain unbounded surfaces. Our approach results in an explicit series solution for any closed measuring surface surrounding a region for which the eigenfunctions of the Dirichlet Laplacian are explicitly known - such as, for example, cube, finite cylinder, half-sphere etc. In addition, we present a fast reconstruction algorithm applicable in the case when the detectors (the centers of the integration spheres) lie on a surface of a cube. This algorithm reconsrtucts 3-D images thousands times faster than backprojection-type methods

    Secondary school admissions

    Get PDF

    Systematic review of antimicrobial drug prescribing in hospitals.

    Get PDF
    Prudent antibiotic prescribing to hospital inpatients has the potential to reduce the incidences of antimicrobial resistance and healthcare-associated infection. We reviewed the literature from January 1980 to November 2003 to identify rigorous evaluations of interventions to improve hospital antibiotic prescribing. We identified 66 studies with interpretable data of which 16 reported 20 microbiological outcomes: Gram negative resistant bacteria (GNRB), 10 studies; Clostridium difficile associated diarrhoea (CDAD), 5 studies; vancomycin resistant enterococci (VRE), 3 studies and methicillin resistant Staphylococcus aureus (MRSA), 2 studies. Four studies provide good evidence that the intervention changed microbial outcomes with low risk of alternative explanations, eight studies provide less convincing evidence and four studies were negative. The strongest and most consistent evidence was for CDAD but we were able to analyse only the immediate impact of interventions because of nonstandardised durations of follow up. The ability to compare results of studies could be substantially improved by standardising methodology and reporting

    Time reversal in thermoacoustic tomography - an error estimate

    Full text link
    The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made on a surface surrounding the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.Comment: 16 pages, 6 figures, expanded "Remarks and Conclusions" section, added one figure, added reference

    2D and 3D reconstructions in acousto-electric tomography

    Full text link
    We propose and test stable algorithms for the reconstruction of the internal conductivity of a biological object using acousto-electric measurements. Namely, the conventional impedance tomography scheme is supplemented by scanning the object with acoustic waves that slightly perturb the conductivity and cause the change in the electric potential measured on the boundary of the object. These perturbations of the potential are then used as the data for the reconstruction of the conductivity. The present method does not rely on "perfectly focused" acoustic beams. Instead, more realistic propagating spherical fronts are utilized, and then the measurements that would correspond to perfect focusing are synthesized. In other words, we use \emph{synthetic focusing}. Numerical experiments with simulated data show that our techniques produce high quality images, both in 2D and 3D, and that they remain accurate in the presence of high-level noise in the data. Local uniqueness and stability for the problem also hold

    Universal Baxterization for Z\mathbb{Z}-graded Hopf algebras

    Full text link
    We present a method for Baxterizing solutions of the constant Yang-Baxter equation associated with Z\mathbb{Z}-graded Hopf algebras. To demonstrate the approach, we provide examples for the Taft algebras and the quantum group Uq[sl(2)]U_q[sl(2)].Comment: 8 page
    corecore