3,364 research outputs found

    Observation of a nanophase segregation in LiCl aqueous solutions from Transient Grating Experiments

    Full text link
    Transient Grating experiments performed on supercooled LiCl, RH2O solutions with R>6 reveal the existence of a strong, short time, extra signal which superposes to the normal signal observed for the R=6 solution and other glass forming systems. This extra signal shows up below 190 K, its shape and the associated timescale depend only on temperature, while its intensity increases with R. We show that the origin of this signal is a phase separation between clusters with a low solute concentration and the remaining, more concentrated, solution. Our analysis demonstrates that these clusters have a nanometer size and a composition which are rather temperature independent, while increasing R simply increases the number of these clusters.Comment: 19 pages+ 8 figures+ 2 table

    The expressive stance: intentionality, expression, and machine art

    Get PDF
    This paper proposes a new interpretive stance for interpreting artistic works and performances that is relevant to artificial intelligence research but also has broader implications. Termed the expressive stance, this stance makes intelligible a critical distinction between present-day machine art and human art, but allows for the possibility that future machine art could find a place alongside our own. The expressive stance is elaborated as a response to Daniel Dennett's notion of the intentional stance, which is critically examined with respect to his specialized concept of rationality. The paper also shows that temporal scale implicitly serves to select between different modes of explanation in prominent theories of intentionality. It also considers the implications of the phenomenological background for systems that produce art

    OpenAL: Evaluation and Interpretation of Active Learning Strategies

    Full text link
    Despite the vast body of literature on Active Learning (AL), there is no comprehensive and open benchmark allowing for efficient and simple comparison of proposed samplers. Additionally, the variability in experimental settings across the literature makes it difficult to choose a sampling strategy, which is critical due to the one-off nature of AL experiments. To address those limitations, we introduce OpenAL, a flexible and open-source framework to easily run and compare sampling AL strategies on a collection of realistic tasks. The proposed benchmark is augmented with interpretability metrics and statistical analysis methods to understand when and why some samplers outperform others. Last but not least, practitioners can easily extend the benchmark by submitting their own AL samplers.Comment: Published in NeurIPS 2022 Workshop on Human in the Loop Learning, 8 page

    Cognition in Context: Phenomenology, Situated Robotics and the Frame Problem

    Get PDF
    The frame problem is the difficulty of explaining how non-magical systems think and act in ways that are adaptively sensitive to context-dependent relevance. Influenced centrally by Heideggerian phenomenology, Hubert Dreyfus has argued that the frame problem is, in part, a consequence of the assumption (made by mainstream cognitive science and artificial intelligence) that intelligent behaviour is representation-guided behaviour. Dreyfus’ Heideggerian analysis suggests that the frame problem dissolves if we reject representationalism about intelligence and recognize that human agents realize the property of thrownness (the property of being always already embedded in a context). I argue that this positive proposal is incomplete until we understand exactly how the properties in question may be instantiated in machines like us. So, working within a broadly Heideggerian conceptual framework, I pursue the character of a representationshunning thrown machine. As part of this analysis, I suggest that the frame problem is, in truth, a two-headed beast. The intra-context frame problem challenges us to say how a purely mechanistic system may achieve appropriate, flexible and fluid action within a context. The inter-context frame problem challenges us to say how a purely mechanistic system may achieve appropriate, flexible and fluid action in worlds in which adaptation to new contexts is open-ended and in which the number of potential contexts is indeterminate. Drawing on the field of situated robotics, I suggest that the intra-context frame problem may be neutralized by systems of special purpose adaptive couplings, while the inter-context frame problem may be neutralized by systems that exhibit the phenomenon of continuous reciprocal causation. I also defend the view that while continuous reciprocal causation is in conflict with representational explanation, special-purpose adaptive coupling, as well as its associated agential phenomenology, may feature representations. My proposal has been criticized recently by Dreyfus, who accuses me of propagating a cognitivist misreading of Heidegger, one that, because it maintains a role for representation, leads me seriously astray in my handling of the frame problem. I close by responding to Dreyfus’ concerns

    NEXUS/Physics: An interdisciplinary repurposing of physics for biologists

    Get PDF
    In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life sciences students, with the goal of helping students build general, multi-discipline scientific competencies. In order to do this, our two-semester NEXUS/Physics course sequence is positioned as a second year course so students will have had some exposure to basic concepts in biology and chemistry. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this. It extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy, and includes a serious discussion of random vs. coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.Comment: 12 page

    Reorientational relaxation of a linear probe molecule in a simple glassy liquid

    Full text link
    Within the mode-coupling theory (MCT) for the evolution of structural relaxation in glass-forming liquids, correlation functions and susceptibility spectra are calculated characterizing the rotational dynamics of a top-down symmetric dumbbell molecule, consisting of two fused hard spheres immersed in a hard-sphere system. It is found that for sufficiently large dumbbell elongations, the dynamics of the probe molecule follows the same universal glass-transition scenario as known from the MCT results of simple liquids. The α\alpha-relaxation process of the angular-index-j=1 response is stronger, slower and less stretched than the one for j=2, in qualitative agreement with results found by dielectric-loss and depolarized-light-scattering spectroscopy for some supercooled liquids. For sufficiently small elongations, the reorientational relaxation occurs via large-angle flips, and the standard scenario for the glass-transition dynamics is modified for odd-j responses due to precursor phenomena of a nearby type-A MCT transition. In this case, a major part of the relaxation outside the transient regime is described qualitatively by the β\beta-relaxation scaling laws, while the α\alpha-relaxation scaling law is strongly disturbed.Comment: 40 pages. 10 figures as GIF-files, to be published in Phys. Rev.

    Light scattering spectra of supercooled molecular liquids

    Full text link
    The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.Comment: 12 page

    Role of Mentorship, Career Conceptualization, and Leadership in Developing Women's Physics Identity and Belonging

    Full text link
    The percentage of women receiving bachelors degrees in physics in the U.S. lags well behind that of men, and women leave the major at higher rates. Achieving equity in physics will mean that women stay in physics at the same rates as men, but this will require changes in the culture and support structures. A strong sense of belonging can lead to higher retention rates so interventions meant to increase dimensions of physics identity (interest, recognition, performance, and competence) may increase persistence overall and increase women's retention differentially. We describe our model in which mentorship, an understanding of career options (career conceptualization), and leadership are inputs into the development of these dimensions of physics identity. This paper includes preliminary results from a qualitative study that aims to better understand how career conceptualization, leadership, and mentorship contribute to the development of physics identity and belonging. We report results from a survey of 15 undergraduate physics students which was followed up by interviews with 5 of those students. The students were from a small private liberal arts college in the midwest region of the U.S. and a large public university in the southeast region of the U.S. classified as a Hispanic-serving institution (HSI). With respect to mentorship, we found that it could provide critical support for students' engagement in the physics community. Leadership experiences have not previously been positioned as an important input into identity, yet we found that they helped women in physics feel more confident, contributing to their recognition of themselves as physics people. While the data on how career conceptualization contributed to the building of identity is limited, there are some connections to recognition and competence, and it will be an interesting avenue of future exploration.Comment: 15 pages, 1 figure, Physical Review Physics Education Research, in pres
    corecore