1,852 research outputs found

    Particle Spectrum of the Supersymmetric Standard Model from the Massless Excitations of a Four Dimensional Superstring

    Get PDF
    A superstring action is quantised with Neveu Schwarz(NS) and Ramond(R) boundary conditions. The zero mass states of the NS sector are classified as the vector gluons, W-mesons, BμB_{\mu}-mesons and scalars containing Higgs. The fifteen zero mass fermions are obtained from the Ramond sector. A space time supersymmetric Hamiltonian of the Standard Model is presented without any conventional SUSY particles

    Solutions of the Renormalisation Group Equation in Minimal Supersymmetric Standard Model

    Full text link
    Renormalisation Group Equation(RGE) for color and top couplings sector of MSSM has been solved. The mass of the top comes out to be 180.363±\pm 10.876 GeV and βtop\beta_{top}=π2\frac{\pi}{2}. It is conjectured that the masses of the other 11 fermions and the CKM phase angle ϕ\phi can be theoretically estimated. The results confirm the fact that the quarks and leptons have been created having equal mass ∼\sim 115 GeV at the MSSM GUT scale ∼ 2.2×1016\sim ~2.2\times 10^{16} GeV

    Three Generations of SUSY Standard Model of Nambu-Goto String

    Full text link
    A four dimensional Superstring is constructed starting from a twenty six dimensional bosonic string. Fermions are introduced by noting the Manselstam's proof of equivalence of two fermions to one boson in 1+1 dimensions. The action of the superstring is invariant under SO(6)×\times SO(5). It has four bosonic coordinates and twenty four Majorana fermions of SO(3,1) representing two transverse modes of super fermions and conformal ghosts (b,c). The super conformal ghosts (β,γ\beta, \gamma) are the quanta of an extended Hilbert space of the remaining longitudinal modes of two superfermions. The massless spectrum obtained by quantising the action, contain vector mesons which are generators of the SO(6)×\timesSO(5). Using Wilson loops, this product group is proven to descend to Z3×SU(3)×SU(2)×U(1)Z_3\times SU(3)\times SU(2)\times U(1) without breaking supersymmetry.Thus there are just three generations of quarks and leptons.Comment: 11 page

    On the structure and spectrum of classical two-dimensional clusters with a logarithmic interaction potential

    Full text link
    We present a numerical study of the effect of the repulsive logarithmic inter-particle interaction on the ground state configuration and the frequency spectrum of a confined classical two-dimensional cluster containing a finite number of particles. In the case of a hard wall confinement all particles form one ring situated at the boundary of the potential. For a general r^n confinement potential, also inner rings can form and we find that all frequencies lie below the frequency of a particular mode, namely the breathing-like mode. An interesting situation arises for the parabolic confined system(i.e. n=2). In this case the frequency of the breathing mode is independent of the number of particles leading to an upper bound for all frequencies. All results can be understood from Earnshaw's theorem in two dimensions. In order to check the sensitivity of these results, the spectrum of vortices in a type II superconductor which, in the limit of large penetration depths, interact through a logarithmic potential, is investigated.Comment: 11 pages, 6 figure
    • …
    corecore