58 research outputs found
The direct correlation functions and bridge functions for hard spheres near a large hard sphere
The recent Monte Carlo data of Degrève and Henderson for the density profiles of hard spheres near a large hard sphere are used to obtain direct correlation functions and bridge functions for this system both directly, using the Ornstein-Zernike relation and an approximation, due to Verlet, for the bridge function. © 1994 American Institute of Physics.published_or_final_versio
Latent Heat Storage with Phase Change Materials (PCMs)
Latent heat thermal energy storage with phase change materials (PCMs) is attractive since providing a high energy density storage due to the phase change by solidification/melting at constant temperature. Relative to sensible heat energy storage systems, latent heat storage with PCMs requires a smaller weight and volume of material for a given amount of captured/stored energy, and has the capacity to store heat of fusion at a constant or nearly constant temperature, thus maintaining a high and constant temperature difference between the heat exchanging surface and the PCMs.The present review paper will summarize the required properties of PCMs, with their respective advantages and disadvantages; the current state of development and manufacturing; the development of PCM applications, including their incorporation into heat exchangers, insertion of a metal matrix into the PCM, the use of PCM dispersed with high conductivity particles. PCM uses will be illustrated through some case-studies
Exploring the Levinthal limit in protein folding
According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.FCT - Foundation for Science and Technology, Portugal [UID/Multi/04326/2013]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientia co e Tecnologico (CNPq
Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study
The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC
Photovoltaics : reviewing the European feed-in-tariffs and changing PV efficiencies and costs
Feed-in-Tariff (FiT) mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i) briefly reviews the mechanisms, advantages, and evolution of FiT; (ii) describes the developments of PV, (iii) applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium); and finally (iv) predicts the levelized cost of energy (LCOE) in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future
Operation diagram of circulating fluidized beds (CFBs)
CFBs are widely used in the chemical, mineral, environmental and energy process industries. Several authors stressed the need for a clear identification of the different operation regimes in the riser of a CFB, to ensure a better comprehension of the hydrodynamic context, and thus better define the operation and design parameters. First approaches to develop a “work map” of the riser operation, were presented by e.g. Grace[1], Yerushalmi and Avidan[2], Bai et al.[3]. It was further developed by Chan et al.[4] and Mahmoudi et al.[5,6] for both Geldart A- and B-type powders, in terms of the operating gas velocity (U) and the solids circulation flux (G), which jointly delineate different regimes, called respectively Dilute Riser Flow (DRF), Core-Annulus Flow (CAF) (possibly with a bottom Turbulent Fluidized Bed, TFBB), and Dense Riser Upflow (DRU). For a given powder and its associated transport velocity, UTR, the combination of U and G will determine the flow regime encountered. Experiments in CFB risers of 0.05 (2.5 m high), 0.1 and 0.15 m I.D. (both 6.5 m high), have demonstrated that common riser operations can be hampered by a specific (U,G) range where choking occurs. Angular sand, rounded sand, and spent FCC (all A-type powders) were used as bed material. Gas velocities were varied between 2 and 10 m/s, for solids circulation fluxes between 10 and 260 kg/m2s. Choking is understood as the phenomenon where a small change in gas or solids flow rate prompts a large change in the pressure drop and/or solids holdup during the gas-solid flow: the stable riser upflow regime is no longer maintained when G-values exceed a certain limit for a given gas velocity. Experimental results were empirically correlated, and proved to be about 30% lower than predicted by the correlation of Bi and Fan[7], but largely exceeding other predictions. Introducing the findings into the available operation diagram [5,6], adds a region where stable riser operation is impossible. The adapted diagram enables CFB designers to better delineate the operating characteristics
The voidage in a CFB riser as function of solids flux and gas velocity
Circulating Fluidised Beds (CFBs) are widely applied in the process industry, for mostly gas-solid and gas-catalytic reactions. The riser is the key component of the CFB being the process reactor. The important design parameters are the operating gas velocity (U) and the solids concentration flux (G). The CFB operation starts at moderate to high superficial gas velocities. Its voidage exceeds ∼ 0.9 and is a function of the solids circulation flux. Different flow modes have been presented in literature, and result in an operation diagram where G and U delineate specific operations, from dilute riser flow, through core-annulus flow, to dense riser upflow (mostly at any U, G exceeding 80 to 120 kg m-2s-1). Increasing G whilst maintaining the gas velocity will cause an increase in suspension concentration. The riser flow can hence be characterized by its apparent voidage, ɛ. In the core-annulus operation, clusters of particles reflux near the wall, thus influencing the local radial voidage in the cross section of the riser, and also extending over a given distance, δ, from the wall to the core .
Through measurements in CFBs of 0.1 and 0.14 m I.D., the research has been able to determine the average axial and radial voidages of the dense phase within the different regimes, whilst also determining the thickness of the annulus (in CAF-mode). Experimental results will be illustrated and compared with previous empirical equations, shown to have a limited accuracy only both for ɛ, and for the thickness of the annulus in CAF operation. Within the operating conditions tested, results demonstrate that the annulus thickness is about 15 to 20% of the riser diameter in CAF, and that the voidage in the riser is a function of U and G, with riser diameter and distance along the riser length as secondary parameters
Concentrated solar power plants : review and design methodology
Concentrated solar power plants (CSPs) are gaining increasing interest, mostly as parabolic trough collectors (PTC) or solar tower collectors (STC). Notwithstanding CSP benefits, the daily and monthly variation of the solar irradiation flux is a main drawback. Despite the approximate match between hours of the day where solar radiation and energy demand peak, CSPs experience short term variations on cloudy days and cannot provide energy during night hours unless incorporating thermal energy storage (TES) and/or backup systems (BS) to operate continuously. To determine the optimum design and operation of the CSP throughout the year, whilst defining the required TES and/or BS, an accurate estimation of the daily solar irradiation is needed. Local solar irradiation data are mostly only available as monthly averages, and a predictive conversion into hourly data and direct irradiation is needed to provide a more accurate input into the CSP design. The paper (i) briefly reviews CSP technologies and STC advantages; (ii) presents a methodology to predict hourly beam (direct) irradiation from available monthly averages, based upon combined previous literature findings and available meteorological data; (iii) illustrates predictions for different selected STC locations; and finally (iv) describes the use of the predictions in simulating the required plant configuration of an optimum STC. The methodology and results demonstrate the potential of CSPs in general, whilst also defining the design background of STC plant
- …