4,438 research outputs found

    Brown dwarf disks with ALMA

    Get PDF
    We present ALMA continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J=3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks physical structure in dust. The results of our analysis show that the disks are relatively large, the smallest one with an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, on the main mechanisms proposed for the formation of brown dwarfs and very low mass stars, as well as on the potential of finding rocky and giant planets around very low mass objects.Comment: 15 pages, 10 figures, accepted for publication in Ap

    A quasi-static nonlinear analysis for assessing the fire resistance of 3d frames exploiting time-dependent yield surface

    Get PDF
    In this work an automatic procedure for evaluating the axial force-biaxial bending yield surface of reinforced concrete sections in fire is proposed. It provides an accurate time-dependent expression of the yield condition by a section analysis carried out once and for all, accounting for the strength reduction of the materials, which is a function of the fire duration. The equilibrium state of 3D frames with such yield conditions, once discretized using beam finite elements, is formulated as a nonlinear vectorial equation defining a curve in the hyperspace of the discrete variables and the fire duration. A generalized path-following strategy is proposed for tracing this curve and evaluating, if it exists, the limit fire duration, that is the time of exposure which leads to structural collapse. Compared to the previous proposals on the topic, which are limited to local sectional checks, this work is the first to present a global analysis for assessing the fire resistance of 3D frames, providing a time history of the fire event and taking account of the stress redistribution. Numerical examples are given to illustrate and validate the proposal

    On random flights with non-uniformly distributed directions

    Full text link
    This paper deals with a new class of random flights Xd(t),t>0,\underline{\bf X}_d(t),t>0, defined in the real space Rd,d2,\mathbb{R}^d, d\geq 2, characterized by non-uniform probability distributions on the multidimensional sphere. These random motions differ from similar models appeared in literature which take directions according to the uniform law. The family of angular probability distributions introduced in this paper depends on a parameter ν0\nu\geq 0 which gives the level of drift of the motion. Furthermore, we assume that the number of changes of direction performed by the random flight is fixed. The time lengths between two consecutive changes of orientation have joint probability distribution given by a Dirichlet density function. The analysis of Xd(t),t>0,\underline{\bf X}_d(t),t>0, is not an easy task, because it involves the calculation of integrals which are not always solvable. Therefore, we analyze the random flight Xmd(t),t>0,\underline{\bf X}_m^d(t),t>0, obtained as projection onto the lower spaces Rm,m<d,\mathbb{R}^m,m<d, of the original random motion in Rd\mathbb{R}^d. Then we get the probability distribution of Xmd(t),t>0.\underline{\bf X}_m^d(t),t>0. Although, in its general framework, the analysis of Xd(t),t>0,\underline{\bf X}_d(t),t>0, is very complicated, for some values of ν\nu, we can provide some results on the process. Indeed, for ν=1\nu=1, we obtain the characteristic function of the random flight moving in Rd\mathbb{R}^d. Furthermore, by inverting the characteristic function, we are able to give the analytic form (up to some constants) of the probability distribution of Xd(t),t>0.\underline{\bf X}_d(t),t>0.Comment: 28 pages, 3 figure

    Harmonic damped oscillators with feedback. A Langevin study

    Full text link
    We consider a system in direct contact with a thermal reservoir and which, if left unperturbed, is well described by a memory-less equilibrium Langevin equation of the second order in the time coordinate. In such conditions, the strength of the noise fluctuations is set by the damping factor, in accordance with the Fluctuation and Dissipation theorem. We study the system when it is subject to a feedback mechanism, by modifying the Langevin equation accordingly. Memory terms now arise in the time evolution, which we study in a non-equilibrium steady state. Two types of feedback schemes are considered, one focusing on time shifts and one on phase shifts, and for both cases we evaluate the power spectrum of the system's fluctuations. Our analysis finds application in feedback cooled oscillators, such as the Gravitational Wave detector AURIGA.Comment: 17 page

    Empirical vulnerability curves for Italian mansory buildings: evolution of vulnerability model from the DPM to curves as a function of accelertion

    Get PDF
    In the framework of the emergency management in the case of seismic events, the evaluation of the expected damage represents a basic requirement for risk informed planning. Seismic risk is defined by the probability to reach a level of damage on given exposed elements caused by seismic events occurring in a fixed period and in a fixed area. To this purpose, the expected seismic input, the exposed elements and their vulnerability have to be correctly evaluated. The aim of the research is to define a correct model of vulnerability curves, in PGA, for masonry structures in Italy, by heuristic approach starting from damage probability matrices (DPMs). To this purpose, the PLINIVS database, containing data on major Italian seismic events, has been used and supported by “critical” assumption on missing data. To support the reliability of this assumption, two vulnerability models, considering or not the hypothesis on the missing data, have been estimated and used to calculate the seismic scenario of the L’Aquila 2009 earthquake through the IRMA (Italian Risk MAp) platform. Finally, a comparison between the outcomes elaborated by IRMA platform and the observed damage collected in the AEDES forms, has been done. © 2020, The Author(s)

    ALMA Observations of ρ-Oph 102: Grain Growth and Molecular Gas in the Disk around a Young Brown Dwarf

    Get PDF
    We present ALMA continuum and spectral line observations of the young brown dwarf ρ-Oph 102 at about 0.89 mm and 3.2 mm. We detect dust emission from the disk at these wavelengths and derive an upper limit on the radius of the dusty disk of ~40 AU. The derived variation of the dust opacity with frequency in the millimeter (mm) provides evidence for the presence of mm-sized grains in the disk's outer regions. This result demonstrates that mm-sized grains are found even in the low-density environments of brown dwarf disks and challenges our current understanding of dust evolution in disks. The CO map at 345 GHz clearly reveals molecular gas emission at the location of the brown dwarf, indicating a gas-rich disk as typically found for disks surrounding young pre-main-sequence stars. We derive a disk mass of ~0.3%-1% of the mass of the central brown dwarf, similar to the typical values found for disks around more massive young stars

    Silicon isotopic abundance toward evolved stars and its application for presolar grains

    Get PDF
    Galactic chemical evolution (GCE) is important for understanding the composition of the present-day interstellar medium (ISM) and of our solar system. In this paper, we aim to track the GCE by using the 29Si/30Si ratios in evolved stars and tentatively relate this to presolar grain composition. We used the APEX telescope to detect thermal SiO isotopologue emission toward four oxygen-rich M-type stars. Together with the data retrieved from the Herschel science archive and from the literature, we were able to obtain the 29Si/30Si ratios for a total of 15 evolved stars inferred from their optically thin 29SiO and 30SiO emission. These stars cover a range of masses and ages, and because they do not significantly alter 29Si/30Si during their lifetimes, they provide excellent probes of the ISM metallicity (or 29Si/30Si ratio) as a function of time. The 29Si/30Si ratios inferred from the thermal SiO emission tend to be lower toward low-mass oxygen-rich stars (e.g., down to about unity for W Hya), and close to an interstellar or solar value of 1.5 for the higher-mass carbon star IRC+10216 and two red supergiants. There is a tentative correlation between the 29Si/30Si ratios and the mass-loss rates of evolved stars, where we take the mass-loss rate as a proxy for the initial stellar mass or current stellar age. This is consistent with the different abundance ratios found in presolar grains. We found that older objects (up to possibly 10 Gyr old) in our sample trace a previous, lower 29Si/30Si value of about 1. Material with this isotopic ratio is present in two subclasses of presolar grains, providing independent evidence of the lower ratio. Therefore, the 29Si/30Si ratio derived from the SiO emission of evolved stars is a useful diagnostic tool for the study of the GCE and presolar grains.Comment: 7 pages, 4 figure

    Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C

    Get PDF
    Metamorphism is thought to destroy microfossils, partly through devolatilization and graphitization of biogenic organic matter. However, the extent to which there is a loss of molecular, elemental and isotope signatures from biomass during high-temperature metamorphism is not clearly established. We report on graphitic structures inside and coating apatite grains from the c. 1850 Ma Michigamme silicate banded iron formation from Michigan, metamorphosed above 550°C. Traces of N, S, O, H, Ca and Fe are preserved in this graphitic carbon and X-ray spectra show traces of aliphatic groups. Graphitic carbon has an expanded lattice around 3.6 Å, forms microscopic concentrically-layered and radiating polygonal flakes and has homogeneous δ13C values around −22‰, identical to bulk analyses. Graphitic carbon inside apatite is associated with nanometre-size ammoniated phyllosilicate. Precursors of these metamorphic minerals and graphitic carbon originated from ferruginous clayrich sediments with biomass. We conclude that graphite coatings and inclusions in apatite grains indicate fluid remobilization during amphibolite-facies metamorphism of precursor biomass. This new evidence fills in observational gaps of metamorphosed biomass into graphite and supports the existence of biosignatures in the highly metamorphosed iron formation from the Eoarchean Akilia Association, which dates from the beginning of the sedimentary rock record
    corecore