1,569 research outputs found

    Influence of biomaterial nanotopography on the adhesive and elastic properties of Staphylococcus aureus cells

    Get PDF
    Despite the well-known beneficial effects of biomaterial nanopatterning on host tissue integration, the influence of controlled nanoscale topography on bacterial colonisation and infection remains unknown. Therefore, the aim of the present study was to determine the nanoscale effect of surface nanopatterning on biomaterial colonisation by S. aureus, utilising AFM nanomechanics and single-cell force spectroscopy (SCFS). Nanoindentation of S. aureus bound to planar (PL) and nanopatterned (SQ) polycarbonate (PC) surfaces suggested two distinct areas of mechanical properties, consistent with a central bacterial cell surrounded by a capsullar component. Nevertheless, no differences in elastic moduli were found between bacteria bound to PL and SQ, suggesting a minor role of nanopatterning in bacterial cell elasticity. Furthermore, SCFS demonstrated increased adhesion forces and work between S. aureus and SQ surfaces at 0 s and 1 s contact times. Although WLC modelling showed similarities in contour lengths for attachment to both surfaces, Poisson analysis suggests increased short-range forces for the S. aureus–SQ interactions. In the case of S. aureus–PL, long-range forces were found to not only be dominant but also repulsive in nature, which may help explain the reduced adhesion forces observed during AFM probing. In conclusion, although surface nanopatterning does not significantly influence the elasticity of attached bacterial cells, it was found to promote the early-adhesion of S. aureus cells to the biomaterial surface

    An Early Litter for the Opossum (Didelphis Marsupialis) in Ohio

    Get PDF
    Author Institution: Department of Zoology, The Ohio State UniversityA female opossum, Didelphis marsupialis, was found dead on the road in Columbus, Franklin County, Ohio, on 25 February 1973, with nine young tightly attached to her teats. The size of the young suggests that they were conceived the first week of January and that the female was reproductively active during the last part of December. Early breeding at this latitude (lat. 40° N) is very unusual and is compared with known breeding dates from other areas of temperate North America

    Influence of biomaterial nanotopography on the adhesive and elastic properties of Staphylococcus aureus cells

    Get PDF
    Despite the well-known beneficial effects of biomaterial nanopatterning on host tissue integration, the influence of controlled nanoscale topography on bacterial colonisation and infection remains unknown. Therefore, the aim of the present study was to determine the nanoscale effect of surface nanopatterning on biomaterial colonisation by S. aureus, utilising AFM nanomechanics and single-cell force spectroscopy (SCFS). Nanoindentation of S. aureus bound to planar (PL) and nanopatterned (SQ) polycarbonate (PC) surfaces suggested two distinct areas of mechanical properties, consistent with a central bacterial cell surrounded by a capsullar component. Nevertheless, no differences in elastic moduli were found between bacteria bound to PL and SQ, suggesting a minor role of nanopatterning in bacterial cell elasticity. Furthermore, SCFS demonstrated increased adhesion forces and work between S. aureus and SQ surfaces at 0 s and 1 s contact times. Although WLC modelling showed similarities in contour lengths for attachment to both surfaces, Poisson analysis suggests increased short-range forces for the S. aureus–SQ interactions. In the case of S. aureus–PL, long-range forces were found to not only be dominant but also repulsive in nature, which may help explain the reduced adhesion forces observed during AFM probing. In conclusion, although surface nanopatterning does not significantly influence the elasticity of attached bacterial cells, it was found to promote the early-adhesion of S. aureus cells to the biomaterial surface

    Biophysical characterization of the inactivation of E. coli transketolase by aqueous co-solvents

    Get PDF
    Transketolase (TK) has been previously engineered, using semi-rational directed evolution and substrate walking, to accept increasingly aliphatic, cyclic, and then aromatic substrates. This has ultimately led to the poor water solubility of new substrates, as a potential bottleneck to further exploitation of this enzyme in biocatalysis. Here we used a range of biophysical studies to characterise the response of both E. coli apo- and holo-TK activity and structure to a range of polar organic co-solvents: acetonitrile (AcCN), n-butanol (nBuOH), ethyl acetate (EtOAc), isopropanol (iPrOH), and tetrahydrofuran (THF). The mechanism of enzyme deactivation was found to be predominantly via solvent-induced local unfolding. Holo-TK is thermodynamically more stable than apo-TK and yet for four of the five co-solvents it retained less activity than apo-TK after exposure to organic solvents, indicating that solvent tolerance was not simply correlated to global conformational stability. The co-solvent concentrations required for complete enzyme inactivation was inversely proportional to co-solvent log(P), while the unfolding rate was directly proportional, indicating that the solvents interact with and partially unfold the enzyme through hydrophobic contacts. Small amounts of aggregate formed in some cases, but this was not sufficient to explain the enzyme inactivation. TK was found to be tolerant to 15% (v/v) iPrOH, 10% (v/v) AcCN, or 6% (v/v) nBuOH over 3 h. This work indicates that future attempts to engineer the enzyme to better tolerate co-solvents should focus on increasing the stability of the protein to local unfolding, particularly in and around the cofactor-binding loops

    Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats

    Get PDF
    We thank Donna Wallace and the Rowett Animal House staff for the daily care of experimental rats, body weight and food intake measurements and MRI scanning, Vivien Buchan and Donna Henderson of the Rowett Analytical Department for proximate analyses and SCFA GC, and Andrew Chappell for conducting the beta-glucan analysis. This research was funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division.Peer reviewedPublisher PD

    Factors affecting the Faradaic efficiency of Fe(0) electrocoagulation

    Get PDF
    Electrocoagulation (EC) using Fe(0) electrodes is a low cost water treatment technology that relies on efficient production of Fe(II) from the electrolytic dissolution of Fe(0) electrodes (i.e. a high Faradaic efficiency). However, the (electro)chemical factors that favor Fe(0) oxidation rather than O2 evolution during Fe(0) EC have not been identified. In this study, we combined electrochemical methods, electron microscopy and Fe measurements to systematically examine the interdependent effects of current density (i), anodic interface potential (EA) and solution chemistry on the Faradaic efficiency. We found that Fe(0) oxidation was favored (Faradaic efficiency >0.85) in chloride and bromide solutions at all i, whereas carbonate, phosphate, citrate, and nitrate solutions lead to Faradaic efficiencies <0.1. The anodic reaction (i.e. Fe(0) oxidation or O2 evolution) only depended on i in the sulfate and formate solutions. Experiments in binary-anion solutions revealed that molar ratios of [HCO3−]/[Cl−] near 100 and [NO3−]/[Cl−] near 20 separated the electrochemical domains of Fe(0) oxidation and O2 evolution in the EC system. These molar ratios were supported by experiments in synthetic groundwater solutions. We also found that the EA vs i curves for solutions with poor Faradaic efficiency overlapped but were situated 2–4 V vs Ag/AgCl higher than those of solutions with high Faradaic efficiency. Therefore, the position of the EA vs i curve, rather than the EA alone, can be used to determine unambiguously the reaction occurring on the Fe(0) anode during EC treatment

    Label-free segmentation of co-cultured cells on a nanotopographical gradient

    Get PDF
    The function and fate of cells is influenced by many different factors, one of which is surface topography of the support culture substrate. Systematic studies of nanotopography and cell response have typically been limited to single cell types and a small set of topographical variations. Here, we show a radical expansion of experimental throughput using automated detection, measurement, and classification of co-cultured cells on a nanopillar array where feature height changes continuously from planar to 250 nm over 9 mm. Individual cells are identified and characterized by more than 200 descriptors, which are used to construct a set of rules for label-free segmentation into individual cell types. Using this approach we can achieve label-free segmentation with 84% confidence across large image data sets and suggest optimized surface parameters for nanostructuring of implant devices such as vascular stents

    Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and Multivessel Disease

    Get PDF
    BACKGROUND: The optimal management of patients found to have multivessel disease while undergoing primary percutaneous coronary intervention (P-PCI) for ST-segment elevation myocardial infarction is uncertain.   OBJECTIVES: CvLPRIT (Complete versus Lesion-only Primary PCI trial) is a U.K. open-label randomized study comparing complete revascularization at index admission with treatment of the infarct-related artery (IRA) only.   METHODS: After they provided verbal assent and underwent coronary angiography, 296 patients in 7 U.K. centers were randomized through an interactive voice-response program to either in-hospital complete revascularization (n = 150) or IRA-only revascularization (n = 146). Complete revascularization was performed either at the time of P-PCI or before hospital discharge. Randomization was stratified by infarct location (anterior/nonanterior) and symptom onset (≀3 h or >3 h). The primary endpoint was a composite of all-cause death, recurrent myocardial infarction (MI), heart failure, and ischemia-driven revascularization within 12 months.   RESULTS: Patient groups were well matched for baseline clinical characteristics. The primary endpoint occurred in 10.0% of the complete revascularization group versus 21.2% in the IRA-only revascularization group (hazard ratio: 0.45; 95% confidence interval: 0.24 to 0.84; p = 0.009). A trend toward benefit was seen early after complete revascularization (p = 0.055 at 30 days). Although there was no significant reduction in death or MI, a nonsignificant reduction in all primary endpoint components was seen. There was no reduction in ischemic burden on myocardial perfusion scintigraphy or in the safety endpoints of major bleeding, contrast-induced nephropathy, or stroke between the groups.   CONCLUSIONS: In patients presenting for P-PCI with multivessel disease, index admission complete revascularization significantly lowered the rate of the composite primary endpoint at 12 months compared with treating only the IRA. In such patients, inpatient total revascularization may be considered, but larger clinical trials are required to confirm this result and specifically address whether this strategy is associated with improved survival. (Complete Versus Lesion-only Primary PCI Pilot Study [CvLPRIT]; ISRCTN70913605)
    • 

    corecore