495 research outputs found

    Surface optical Raman modes in InN nanostructures

    Full text link
    Raman spectroscopic investigations are carried out on one-dimensional nanostructures of InN,such as nanowires and nanobelts synthesized by chemical vapor deposition. In addition to the optical phonons allowed by symmetry; A1, E1 and E2(high) modes, two additional Raman peaks are observed around 528 cm-1 and 560 cm-1 for these nanostructures. Calculations for the frequencies of surface optical (SO) phonon modes in InN nanostructures yield values close to those of the new Raman modes. A possible reason for large intensities for SO modes in these nanostructures is also discussed.Comment: 13 pages, 4 figures, Submitted in Journa

    Blue luminescence of Au nanoclusters embedded in silica matrix

    Full text link
    Photoluminescence study using the 325 nm He-Cd excitation is reported for the Au nanoclusters embedded in SiO2 matrix. Au clusters are grown by ion beam mixing with 100 KeV Ar+ irradiation on Au [40 nm]/SiO2 at various fluences and subsequent annealing at high temperature. The blue bands above ~3 eV match closely with reported values for colloidal Au nanoclusters and supported Au nanoislands. Radiative recombination of sp electrons above Fermi level to occupied d-band holes are assigned for observed luminescence peaks. Peaks at 3.1 eV and 3.4 eV are correlated to energy gaps at the X- and L-symmetry points, respectively, with possible involvement of relaxation mechanism. The blue shift of peak positions at 3.4 eV with decreasing cluster size is reported to be due to the compressive strain in small clusters. A first principle calculation based on density functional theory using the full potential linear augmented plane wave plus local orbitals (FP-LAPW+LO) formalism with generalized gradient approximation (GGA) for the exchange correlation energy is used to estimate the band gaps at the X- and L-symmetry points by calculating the band structures and joint density of states (JDOS) for different strain values in order to explain the blueshift of ~0.1 eV with decreasing cluster size around L-symmetry point.Comment: 13 pages, 7 Figures Only in PDF format; To be published in J. of Chem. Phys. (Tentative issue of publication 8th December 2004

    Recrystallization of epitaxial GaN under indentation

    Full text link
    We report recrystallization of epitaxial (epi-) GaN(0001) film under indentation.Hardness value is measured close to 10 GPa, using a Berkovich indenter. Pop-in burst in the loading line indicates nucleation of dislocations setting in plastic motion of lattice atoms under stress field for the recrystallization process. Micro-Raman studies are used to identify the recrystallization process. Raman area mapping indicates the crystallized region. Phonon mode corresponding to E2(high) close to 570 cm-1 in the as-grown epi-GaN is redshifted to stress free value close to 567 cm-1 in the indented region. Evolution of A1(TO) and E1(TO) phonon modes are also reported to signify the recrystallization process.Comment: 10 pages, 3 figures

    Magnetotransport properties of individual InAs nanowires

    Full text link
    We probe the magnetotransport properties of individual InAs nanowires in a field effect transistor geometry. In the low magnetic field regime we observe magnetoresistance that is well described by the weak localization (WL) description in diffusive conductors. The weak localization correction is modified to weak anti-localization (WAL) as the gate voltage is increased. We show that the gate voltage can be used to tune the phase coherence length (lϕl_\phi) and spin-orbit length (lsol_{so}) by a factor of \sim 2. In the high field and low temperature regime we observe the mobility of devices can be modified significantly as a function of magnetic field. We argue that the role of skipping orbits and the nature of surface scattering is essential in understanding high field magnetotransport in nanowires

    Observational indications of magneto-optical effects in the scattering polarization wings of the Ca I 4227 \AA\ line

    Full text link
    Several strong resonance lines, such as H I Ly-α\alpha, Mg II k, Ca II K, Ca I 4227 \AA\, which are characterized by deep and broad absorption profiles in the solar intensity spectrum, show conspicuous linear scattering polarization signals when observed in quiet regions close to the solar limb. Such signals show a characteristic triplet-peak structure, with a sharp peak in the line core and extended wing lobes. The line core peak is sensitive to the presence of magnetic fields through the Hanle effect, which however is known not to operate in the line wings. Recent theoretical studies indicate that, contrary to what was previously believed, the wing linear polarization signals are also sensitive to the magnetic field through magneto-optical effects (MO). We search for observational indications of this recently discovered physical mechanism in the scattering polarization wings of the Ca I 4227 \AA\ line. We performed a series of spectropolarimetric observations of this line using the Zurich IMaging POLarimeter (ZIMPOL) camera at the Gregory-Coud\'e telescope of IRSOL (Switzerland) and at the GREGOR telescope in Tenerife (Spain). Spatial variations of the total linear polarization degree and of the linear polarization angle are clearly appreciable in the wings of the observed line. We provide a detailed discussion of our observational results, showing that the detected variations always take place in regions where longitudinal magnetic fields are present, thus supporting the theoretical prediction that they are produced by MO effects.Comment: Accepted by A&

    Fast transport of Bose-Einstein condensates

    Get PDF
    We propose an inverse method to accelerate without final excitation the adiabatic transport of a Bose Einstein condensate. The method, applicable to arbitrary potential traps, is based on a partial extension of the Lewis-Riesenfeld invariants, and provides transport protocols that satisfy exactly the no-excitation conditions without constraints or approximations. This inverse method is complemented by optimizing the trap trajectory with respect to different physical criteria and by studying the effect of noise
    corecore