14,902 research outputs found

    Initial experimental evidence that the ability to choose between items alters attraction to familiar versus novel persons in different ways for men and women

    Get PDF
    Nonhuman species may respond to novel mates with increased sexual motivation (‘The Coolidge Effect1). In humans, novel technological advances, such as online dating platforms, are thought to result in ‘Choice Overload’2. This may undermine the goal of finding a meaningful relationship3, orienting the user toward novel possible partners versus committing to a partner. Here, we used a paradigm measuring change in attraction to familiar faces (i.e. rated on second viewing4) to investigate Coolidge-like phenomena in humans primed with choice of potential online dating partners. We examined two pre-registered hypotheses (https://osf.io/xs74r/files/). First, whether experimentally priming choice (viewing a slideshow of online dating images) directly reduces the attractiveness of familiar preferred sex faces compared to our control condition. Second, whether the predicted effect is stronger for men than women given the role of the Coolidge effect in male sexual motivation5.<br/

    Resonance absolute quantum reflection at selected energies

    Full text link
    The possibility of the resonance reflection (100 % at maximum) is revealed. The corresponding exactly solvable models with the controllable numbers of resonances, their positions and widths are presented.Comment: 5 pages, 2 figure

    Quantum Chinos Game: winning strategies through quantum fluctuations

    Full text link
    We apply several quantization schemes to simple versions of the Chinos game. Classically, for two players with one coin each, there is a symmetric stable strategy that allows each player to win half of the times on average. A partial quantization of the game (semiclassical) allows us to find a winning strategy for the second player, but it is unstable w.r.t. the classical strategy. However, in a fully quantum version of the game we find a winning strategy for the first player that is optimal: the symmetric classical situation is broken at the quantum level.Comment: REVTEX4.b4 file, 3 table

    Brick Walls and AdS/CFT

    Full text link
    We discuss the relationship between the bulk-boundary correspondence in Rehren's algebraic holography (and in other 'fixed-background' approaches to holography) and in mainstream 'Maldacena AdS/CFT'. Especially, we contrast the understanding of black-hole entropy from the viewpoint of QFT in curved spacetime -- in the framework of 't Hooft's 'brick wall' model -- with the understanding based on Maldacena AdS/CFT. We show that the brick-wall modification of a Klein Gordon field in the Hartle-Hawking-Israel state on 1+2-Schwarzschild AdS (BTZ) has a well-defined boundary limit with the same temperature and entropy as the brick-wall-modified bulk theory. One of our main purposes is to point out a close connection, for general AdS/CFT situations, between the puzzle raised by Arnsdorf and Smolin regarding the relationship between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle embodied in the 'correspondence principle' proposed by Mukohyama and Israel in their work on the brick-wall approach to black hole entropy. Working on the assumption that similar results will hold for bulk QFT other than the Klein Gordon field and for Schwarzschild AdS in other dimensions, and recalling the first author's proposed resolution to the Mukohyama-Israel puzzle based on his 'matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT, the algebra of the boundary CFT is isomorphic only to a proper subalgebra of the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of bulk and boundary theories are still the 'same' -- the total bulk state being pure, while the boundary state is mixed (thermal). We also argue from the finiteness of its boundary (and hence, on our assumptions, also bulk) entropy at finite temperature, that the Rehren dual of the Maldacena boundary CFT cannot itself be a QFT and must, instead, presumably be something like a string theory.Comment: 54 pages, 3 figures. Arguments strengthened in the light of B.S. Kay `Instability of Enclosed Horizons' arXiv:1310.739

    Evaluation of bistable systems versus matched filters in detecting bipolar pulse signals

    Full text link
    This paper presents a thorough evaluation of a bistable system versus a matched filter in detecting bipolar pulse signals. The detectability of the bistable system can be optimized by adding noise, i.e. the stochastic resonance (SR) phenomenon. This SR effect is also demonstrated by approximate statistical detection theory of the bistable system and corresponding numerical simulations. Furthermore, the performance comparison results between the bistable system and the matched filter show that (a) the bistable system is more robust than the matched filter in detecting signals with disturbed pulse rates, and (b) the bistable system approaches the performance of the matched filter in detecting unknown arrival times of received signals, with an especially better computational efficiency. These significant results verify the potential applicability of the bistable system in signal detection field.Comment: 15 pages, 9 figures, MikTex v2.

    Generating quantum states through spin chain dynamics

    Get PDF
    Spin chains can realise perfect quantum state transfer between the two ends via judicious choice of coupling strengths. In this paper, we study what other states can be created by engineering a spin chain. We conclude that, up to local phases, all single excitation quantum states with support on every site of the chain can be created. We pay particular attention to the generation of W-states that are superposed over every site of the chain.Comment: 9 pages, 1 figur

    Motor Timing Intraindividual Variability in Amnestic Mild Cognitive Impairment and Cognitively Intact Elders at Genetic Risk for Alzheimer’s Disease

    Get PDF
    Introduction: Intraindividual variability (IIV) in motor performance has been shown to predict future cognitive decline. The apolipoprotein E-epsilon 4 (APOE-Δ4) allele is also a well-established risk factor for memory decline. Here, we present novel findings examining the influence of the APOE-Δ4 allele on the performance of asymptomatic healthy elders in comparison to individuals with amnestic MCI (aMCI) on a fine motor synchronization, paced finger-tapping task (PFTT). Method: Two Alzheimer’s disease (AD) risk groups, individuals with aMCI (n = 24) and cognitively intact APOE-Δ4 carriers (n = 41), and a control group consisting of cognitively intact APOE-Δ4 noncarriers (n = 65) completed the Rey Auditory Verbal Learning Test and the PFTT, which requires index finger tapping in synchrony with a visual stimulus (interstimulus interval = 333 ms). Results: Motor timing IIV, as reflected by the standard deviation of the intertap interval (ITI), was greater in the aMCI group than in the two groups of cognitively intact elders; in contrast, all three groups had statistically equivalent mean ITI. No significant IIV differences were observed between the asymptomatic APOE-Δ4 carriers and noncarriers. Poorer episodic memory performance was associated with greater IIV, particularly in the aMCI group. Conclusions: Results suggest that increased IIV on a fine motor synchronization task is apparent in aMCI. This IIV measure was not sensitive in discriminating older asymptomatic individuals at genetic risk for AD from those without such a genetic risk. In contrast, episodic memory performance, a well-established predictor of cognitive decline in preclinical AD, was able to distinguish between the two cognitively intact groups based on genetic risk

    Orientation and solvatochromism of dyes in liquid crystals.

    Get PDF
    The orientation and solvatochromism of some dye molecules in a liquid crystal have been investigated. Interactions with the host and the structure of the dye molecule affect the macroscopic alignment of dichroic dye molecules in a liquid crystal: It was observed that some dye molecules show a large bathochromic shift of their absorption maxima in the liquid crystal host relative to the situation in isotropic solvents. It is suggested that this is due to the occurrence of a much weaker reaction field in the anisotropic, rigid host. These dye molecules show little or no apparent order in the anisotropic host despite the observation of a reduction in the electro optic switching time when the dye is present. The highest degree of macroscopic alignment was observed for a merocyanine compound, which showed the smallest solvatochromic shift in the liquid crystal host. These results are discussed in terms of the steric, dipolar and hydrogen bond interactions between the guest and the host
    • 

    corecore