11 research outputs found
Density of states in SF bilayers with arbitrary strength of magnetic scattering
We developed the self-consistent method for the calculation of the density of
states in the SF bilayers. It based on the quasi-classical Usadel
equations and takes into account the suppression of superconductivity in the S
layer due to the proximity effect with the F metal, as well as existing
mechanisms of the spin dependent electron scattering. We demonstrate that the
increase of the spin orbit or spin flip electron scattering rates results in
completely different transformations of at the free F layer
interface. The developed formalism has been applied for the interpretation of
the available experimental data.Comment: 5 pages, 8 figure
Micro- and nanostructure of zn whiskers and their coating
International audienc
Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy
We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data
Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy
We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data
Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy
7 pages, 6 figuresInternational audienceWe studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data
Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy
We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data
Micro- and Nanostructure of Zn Whiskers and Their Coating
International audienc