11 research outputs found

    Density of states in SF bilayers with arbitrary strength of magnetic scattering

    Get PDF
    We developed the self-consistent method for the calculation of the density of states N(ϵ)N(\epsilon) in the SF bilayers. It based on the quasi-classical Usadel equations and takes into account the suppression of superconductivity in the S layer due to the proximity effect with the F metal, as well as existing mechanisms of the spin dependent electron scattering. We demonstrate that the increase of the spin orbit or spin flip electron scattering rates results in completely different transformations of N(ϵ)N(\epsilon) at the free F layer interface. The developed formalism has been applied for the interpretation of the available experimental data.Comment: 5 pages, 8 figure

    Micro- and nanostructure of zn whiskers and their coating

    No full text
    International audienc

    Micro- and nanostructure of zn whiskers and their coating

    No full text
    International audienc

    Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy

    No full text
    We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data

    Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy

    No full text
    We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data

    Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy

    No full text
    7 pages, 6 figuresInternational audienceWe studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data

    Scanning Tunneling Spectroscopy of the superconducting proximity effect in a diluted ferromagnetic alloy

    No full text
    We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data
    corecore