2,345 research outputs found

    Project ExCEL—Web-based SEM for K–12 Education

    Get PDF
    The goal of Project ExCEL, the Extended Classroom for Enhanced Learning, is to bring the capabilities of Scanning Electron Microscopy (SEM) into elementary and secondary classrooms. We have developed an entirely web-based interface to allow schools to control a modern SEM. The web interface allows a remote user complete control of all the operating parameters of the microscope, including stage movement and x-ray chemical analysis. Such total control currently is not available on any other system. Since pioneering the idea of remote SEM use for K-12 education in the early 1990s, we have learned that merely providing schools and teachers access to high technology equipment does not ensure that it will be used. Many teachers are too busy and their curriculum too structured to allow incorporation of the WebSEM into their lessons. Many lack knowledge in the area of SEM and do not possess confidence in their abilities to operate the instrument. To overcome these problems, MSE is working with the Department of Curriculum and Instruction (C&I) to train future teachers in the use of the WebSEM. Science Education professors are incorporating the WebSEM into their courses and having selected students receive training on its use. These students then prepare lesson plans and present their work to the remainder of the class. Evaluation data from students is positive. In-service teachers receive instruction and training in the WebSEM through summer workshops. By using this integrated approach, it is hoped that all science teachers in Iowa will eventual gain the information, expertise, and confidence to use the WebSEM in their respective classrooms

    Impact de la variation du niveau d'eau d'un marais du lac Saint-Pierre (Québec, Canada) sur les concentrations et les flux d'hydrogène, monoxyde de carbone, méthane et dioxyde de carbone

    Get PDF
    Le but de la présente étude était d'étudier l'impact de la variation des niveaux d'eau d'un marais d'eau douce (Baie Saint-François, Québec) sur l'évolution des concentrations et des flux d'hydrogène, monoxyde de carbone, méthane et dioxyde de carbone. Une approche originale impliquant l'association d'un gradient de concentration de ces composés sur un profil vertical de 1,5 m au transfert de flux turbulent micrométéorologique fut utilisée pour la détermination des flux. L'étude démontre qu'une hausse du niveau d'eau d'un bassin versant alimentant une zone humide influence les flux de méthane, de monoxyde de carbone d'hydrogène et de dioxyde de carbone. En conditions submergées, le marais émettait du méthane et du monoxyde de carbone et consommait moins d'hydrogène troposphérique. Ainsi, cette étude démontre que des mesures in situ peuvent servir à inférer des scénarios d'impacts possibles des changements climatiques et des variations des niveaux d'eau sur les émissions des gaz à effets de serre dans l'écosystème du fleuve Saint-Laurent.Wetlands are known for their great biodiversity and the important carbon reservoir that they represent. Moreover, in the global warming context, these ecosystems represent net sources or sinks for different greenhouse gases depending of their conditions. For instance, flooded conditions favour methane production whereas they prevent hydrogen and carbon monoxide soil consumption. Baie Saint-François is a freshwater wetland that opens onto Lake Saint-Pierre (St. Lawrence River) where water levels are subject to important fluctuations due to natural processes and human activities (hydroelectricity and navigation). This study was done in order to assess the impact of the Lake Saint-Pierre water level variations on the tropospheric methane, carbon monoxide, hydrogen and carbon dioxide dynamics over the wetland. Knowledge of these dynamics should provide indications about the possible effects of the decreasing or increasing water level associated with the global warming on the production or consumption of these trace gases.Studies were carried out between June and August 2003 in Baie Saint-François where soil was subjected to successions of flooded and dry conditions. Water and carbon dioxide fluxes were obtained with a Bowen ratio micrometeorological station including a high frequency single infrared gas analyser. Hydrogen, carbon monoxide and methane fluxes were estimated with the modified Bowen method, their vertical concentration gradients (1.5 m) were measured over the plant canopy. The Bowen Ratio station was equipped with different probes to measure parameters such as net radiations, soil heat fluxes and vertical temperature gradients. The turbulent transfer coefficient (k) obtained every 20 min was assumed equal for heat, water vapour and trace gases. Hence, fluxes calculations were done by the multiplication of the turbulent transfer coefficients with the vertical concentration gradients of hydrogen, carbon monoxide and methane.The instrument used to detect hydrogen, carbon monoxide and methane was a RGA5. This analyser has two detectors: the reductive gas detector (RGD) for hydrogen and carbon monoxide and a flame ionisation detector (FID) for methane. The RGD contains an HgO bed wherein oxygen reacts with reductive gases resulting in Hg° releases detectable by differential UV absorbance. Chemicals were detected continuously in 10 min cycles with an analytical reproducibility of ±0.2, 0.3 and 2% for hydrogen, carbon monoxide and methane. Generally, vertical concentration gradients measured were greater than these limits. A calibration gas containing hydrogen, carbon monoxide and methane at 4940, 1000 and 1000 ppbv respectively in nitrogen was analysed daily to verify calibration. To ensure data integrity, linearity of the instrument was assayed by several dilutions of the standard gas and the integration of the curves gave a correction factor for hydrogen (18%) and carbon monoxide (13%). An intercomparison with NOAA (National Oceanic and Atmospheric Administration) was done to corroborate these correction factors.Background carbon monoxide, methane and carbon dioxide levels were in agreement with literature values. However, hydrogen was low, as observed by other investigators in summertime, since this season is related to minimal concentrations. Methane followed a diurnal cycle where maximum levels were observed during nighttime. In wet conditions, these nocturnal peaks reached occasionally 4000 ppbv and could be explained by specific production mechanisms and diurnal changes of vertical mixing in the boundary layer. Sensitivity of the processes responsible for methane and carbon monoxide cycling was seen between July 21st and 26th where a rain episode (total precipitation of 33.2 mm) increased their background concentrations. It seems that this precipitation was enough to favour methanogenesis and inhibit tropospheric CO and CH4 consumptions by a reduction of the diffusion of these chemicals into the soil.Our results demonstrated that four to eleven days following a variation of the Lake Saint-Pierre water level, a change in the tropospheric hydrogen, carbon monoxide and methane concentrations was observed. This lag might be explained by the distance between the lake and the research station (about 1.5 km) and the required time for the adaptation of soil microorganisms to the disruption of their environment. The concentration variations of these chemicals resulted from the inhibition of the processes responsible for their consumption or the activation of the processes accountable for their production.In June, the wetland was flooded and the CO2 median flux was -56.5 g m-2 d-1. Fluxes increased significantly (Mann-Whitney, α=0.01) in July to 5.30 g m-2 d-1, possibly due to dry conditions. Indeed, absence of water favours the activity of soil aerobic microorganisms which might produce more carbon dioxide than the quantity used by plants during photosynthesis.Methane was produced in June where the median flux was 54 mg m-2 d-1. These emissions were caused by the presence of water which maintained anaerobic conditions in the sediments, a suitable environment for methanogenic microorganisms. July was characterised by dry conditions, which generated aerobic environments in soils, an unfavourable microniche for methanogens. Therefore, methane median fluxes decreased significantly (Mann-Whitney, α=0.05) to 0.011 mg m-2 d-1 in July. In August, before the end of the investigation period, water levels had increased but methane fluxes were not significantly higher than in July. Moreover, in this period, methane concentrations tended to increase, showing that after an augmentation of the Lake Saint-Pierre water level, Baie Saint-François flooding area could represent a methane source.During summer 2003, Baie Saint-François acted as a net source of carbon monoxide. In June, the median flux was 21 µg m-2 d-1 due to presence of water which inhibited consumption by soil. Emissions were significantly (Mann-Whitney, α=0.05) lower in July (15 µg m-2 d-1) due to the absence of water, which represented a suitable environment for microorganisms consuming tropospheric carbon monoxide. In August, the median carbon monoxide flux attained 65 µg m-2 d-1 due to an increase of the Lake Saint-Pierre water level. Net carbon monoxide emissions observed in wet and dry conditions might be due to the high organic content in soil and water in addition to the presence of plants since all of these are subjected to photooxidation, generating this pollutant. Therefore, an increase of the Lake Saint-Pierre water level is associated with an augmentation of tropospheric carbon monoxide due to the inhibition of the processes responsible of its consumption.A decline in the water level might result in the activation of the soil microorganisms (or abiotic hydrogenases) able to consume tropospheric hydrogen. At the beginning of the campaign (June), the median hydrogen flux was weak (-1.37 g m-2 d-1) due to the presence of water. However, a net soil consumption was seen in July, where the median hydrogen flux decreased to -125 g m-2 d-1. The Lake Saint-Pierre water level increase observed in August was associated with a significant (Mann-Whitney, α=0.05) augmentation of the hydrogen median flux to 299 g m-2 d-1. Consequently, a rise in the Lake Saint-Pierre water levels induced an inhibition of the processes responsible of the tropospheric hydrogen consumption.This study illustrated that the water level fluctuations of the Lake Saint-Pierre have an impact on the H2, CO, CH4 and CO2 dynamics over the surrounding wetlands. When the Lake Saint-Pierre water level decreased, the wetlands acted as a carbon monoxide and carbon dioxide source, but as a consumer of tropospheric hydrogen and a minor source of methane

    Project ExCEL: Web-based Scanning Electron Microscopy for K-12 Education

    Get PDF
    Project ExCEL (Extended Classroom for Enhanced Learning) brings the capabilities of scanning electron microscopy (SEM) into classrooms. University and industry personnel, working together, have developed a web-based interface to allow schools to control a modern SEM. The interface allows a user control of the operating parameters of the microscope, stage movement, and chemical analysis. Such total control is not available on any other system. Since Iowa State University (ISU) pioneered the idea of remote SEM for education, researchers have learned that providing teachers access to sophisticated equipment does not ensure that it will be used. Teachers are busy, and structured curriculums are not conducive for incorporating the SEM into classes. A lack of teacher knowledge of SEMs also discourages their use. To overcome these problems, College of Engineering and College of Education faculty are working together to train future teachers in the SEM. The web-based SEM is being used in education courses, and selected students (who receive additional training) prepare lesson plans and present their work to the class. In-service teachers receive instruction in the web-based SEM through workshops. By using this integrated approach, all science teachers in Iowa will eventually gain the confidence to use the SEM in their classrooms

    Pharmacokinetics, safety, and efficacy of a single co-administered dose of diethylcarbamazine, albendazole and ivermectin in adults with and without Wuchereria bancrofti infection in Cote d\u27Ivoire

    Get PDF
    BackgroundA single co-administered dose of ivermectin (IVM) plus diethylcarbamazine (DEC) plus albendazole (ALB), or triple-drug therapy, was recently found to be more effective for clearing microfilariae (Mf) than standard DEC plus ALB currently used for mass drug administration programs for lymphatic filariasis (LF) outside of sub-Saharan Africa. Triple-drug therapy has not been previously tested in LF-uninfected individuals from Africa. This study evaluated the pharmacokinetics (PK), safety, and efficacy of triple-drug therapy in people with and without Wuchereria bancrofti infection in West Africa.MethodsIn this open-label cohort study, treatment-naïve microfilaremic (>50 mf/mL, n = 32) and uninfected (circulating filarial antigen negative, n = 24) adults residing in Agboville district, Côte d’Ivoire, were treated with a single dose of IVM plus DEC plus ALB, and evaluated for adverse events (AEs) until 7 days post treatment. Drug levels were assessed by liquid chromatography and mass spectrometry. Persons responsible for assessing AEs were blinded to participants’ infection status.FindingsThere was no difference in AUC0-inf or Cmax between LF-infected and uninfected participants (P>0.05 for all comparisons). All subjects experienced mild AEs; 28% and 25% of infected and uninfected participants experienced grade 2 AEs, respectively. There were no severe or serious adverse events. Only fever (16 of 32 versus 4 of 24, PConclusionsModerate to heavy W. bancrofti infection did not affect PK parameters for IVM, DEC or ALB following a single co-administered dose of these drugs compared to uninfected individuals. The drugs were well tolerated. This study confirmed the efficacy of the triple-drug therapy for clearing W. bancrofti Mf and has added important information to support the use of this regimen in LF elimination programs in areas of Africa without co-endemic onchocerciasis or loiasis.Trial registrationClinicalTrials.gov NCT02845713.</div

    Improving School Leadership: The Promise of Cohesive Leadership Systems

    Get PDF
    Describes Wallace grantees' work to create a cohesive leadership system of coordinated policies between states and districts and across state agencies, states' and districts' efforts to forge cohesive policies, and the impact on instructional leadership

    Natural occurrence of entomopathogenic nematodes (Rhabditida : Steinernematidae and Heterorhabditidae) in Guadeloupe islands

    Get PDF
    Des prospections ont été réalisées sur 538 sites en Guadeloupe (Grande Terre, Basse Terre) et dans ses dépendances (Marie-Galante, La Désirade, Petite Terre, Les Saintes, Saint-Barthélémy, Saint-Martin) pour rechercher des nématodes entomopathogènes par la technique du piège à insecte (#FGalleria mellonella).Sur35sitespositifs(6). Sur 35 sites positifs (6%), 34 hébergent des #Heterorhabditis (97%) et l'un d'eux un #Steinernema(3 (3%). Deux espèces d'#Heterorhabditis ont été identifiées : #H. indica (88%) et #H. bacteriophora(12 (12%). Le #Steinernema appartient sans doute à une nouvelle espèce en cours d'étude. Les nématodes ont été isolés en zone côtière (91,4%), en zone tropicale de basse (5,7%) et de moyenne altitude (2,9%). Aucun nématode n'a été trouvé en zone montagneuse. (Résumé d'auteur

    Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.

    Get PDF
    BACKGROUND\ud \ud Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud \ud METHODS\ud \ud The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud \ud RESULTS\ud \ud All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud \ud CONCLUSION\ud \ud Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    New Loop Representations for 2+1 Gravity

    Get PDF
    Since the gauge group underlying 2+1-dimensional general relativity is non-compact, certain difficulties arise in the passage from the connection to the loop representations. It is shown that these problems can be handled by appropriately choosing the measure that features in the definition of the loop transform. Thus, ``old-fashioned'' loop representations - based on ordinary loops - do exist. In the case when the spatial topology is that of a two-torus, these can be constructed explicitly; {\it all} quantum states can be represented as functions of (homotopy classes of) loops and the scalar product and the action of the basic observables can be given directly in terms of loops.Comment: 28pp, 1 figure (postscript, compressed and uuencoded), TeX, Pennsylvania State University, CGPG-94/5-
    corecore