2,553 research outputs found

    The muonic longitudinal shower profiles at production

    Get PDF
    In this paper the longitudinal profile of muon production along the shower axis is studied. The characteristics of this distribution is investigated for different primary masses, zenith angles, primary energies, and different high energy hadronic models. It is found that the shape of this distribution displays universal features similarly to what is known for the electromagnetic profile. The relation between the muon production distribution and the longitudinal electromagnetic evolution is also discussed

    The non-linearity between <ln A> and <Xmax> induced by the acceptance of fluorescence telescopes

    Full text link
    The measurement of the average depth of the shower maximum is the most commonly used observable for the possible inference of the primary cosmic-ray mass composition. Currently, different experimental Collaborations process and present their data not in the same way, leading to problems in the comparability and interpretation of the results. Whereas is expected to be proportional to in ideal conditions, we demonstrate that the finite field-of-view of fluorescence telescopes plus the attenuation in the atmosphere can introduce a non-linearity into this relation, which is specific for each particular detector setup

    Cosmic Rays at the highest energies

    Full text link
    After a century of observations, we still do not know the origin of cosmic rays. I will review the current state of cosmic ray observations at the highest energies, and their implications for proposed acceleration models and secondary astroparticle fluxes. Possible sources have narrowed down with the confirmation of a GZK-like spectral feature. The anisotropy observed by the Pierre Auger Observatory may signal the dawn of particle astronomy raising hopes for high energy neutrino observations. However, composition related measurements point to a different interpretation. A clear resolution of this mystery calls for much larger statistics than the reach of current observatories.Comment: 8 pages, 4 figures, in the Proceedings of TAUP 201

    Studying the nuclear mass composition of Ultra-High Energy Cosmic Rays with the Pierre Auger Observatory

    Get PDF
    The Fluorescence Detector of the Pierre Auger Observatory measures the atmospheric depth, XmaxX_{max}, where the longitudinal profile of the high energy air showers reaches its maximum. This is sensitive to the nuclear mass composition of the cosmic rays. Due to its hybrid design, the Pierre Auger Observatory also provides independent experimental observables obtained from the Surface Detector for the study of the nuclear mass composition. We present XmaxX_{max}-distributions and an update of the average and RMS values in different energy bins and compare them to the predictions for different nuclear masses of the primary particles and hadronic interaction models. We also present the results of the composition-sensitive parameters derived from the ground level component.Comment: Proceedings of the 12th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2011, Munich, German

    Pluto: A Monte Carlo Simulation Tool for Hadronic Physics

    Full text link
    Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. This report gives an overview of the design of the package, the included models and the user interface.Comment: XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research, April 23-27 2007, Amsterdam, the Netherland

    Hadronic physics with the Pierre Auger Observatory

    Get PDF
    Extensive air showers are the result of billions of particle reactions initiated by single cosmic rays at ultra-high energy. Their characteristics are sensitive both to the mass of the primary cosmic ray and to the fine details of hadronic interactions. Ultra-high energy cosmic rays can be used to experimentally extend our knowledge on hadronic interactions in energy and kinematic regions beyond those tested by human-made accelerators. We report on how the Pierre Auger Observatory is able to measure the proton-air cross section for particle production at a center-of-mass energy per nucleon of 39 TeV and 56 TeV and also to constrain the new hadronic interaction models tuned after the results of the Large Hadron Collider, by measuring: the average shape of the electromagnetic longitudinal profile of air showers, the moments of the distribution of the depth at which they reach their maximum, and the content and production depth of muons in air showers with a primary center-of-mass energy per nucleon around and above the 100 TeV scale.Peer Reviewe
    corecore