2,553 research outputs found
The muonic longitudinal shower profiles at production
In this paper the longitudinal profile of muon production along the shower
axis is studied. The characteristics of this distribution is investigated for
different primary masses, zenith angles, primary energies, and different high
energy hadronic models. It is found that the shape of this distribution
displays universal features similarly to what is known for the electromagnetic
profile. The relation between the muon production distribution and the
longitudinal electromagnetic evolution is also discussed
The non-linearity between <ln A> and <Xmax> induced by the acceptance of fluorescence telescopes
The measurement of the average depth of the shower maximum is the most
commonly used observable for the possible inference of the primary cosmic-ray
mass composition. Currently, different experimental Collaborations process and
present their data not in the same way, leading to problems in the
comparability and interpretation of the results. Whereas  is expected to
be proportional to  in ideal conditions, we demonstrate that the finite
field-of-view of fluorescence telescopes plus the attenuation in the atmosphere
can introduce a non-linearity into this relation, which is specific for each
particular detector setup
Cosmic Rays at the highest energies
After a century of observations, we still do not know the origin of cosmic
rays. I will review the current state of cosmic ray observations at the highest
energies, and their implications for proposed acceleration models and secondary
astroparticle fluxes. Possible sources have narrowed down with the confirmation
of a GZK-like spectral feature. The anisotropy observed by the Pierre Auger
Observatory may signal the dawn of particle astronomy raising hopes for high
energy neutrino observations. However, composition related measurements point
to a different interpretation. A clear resolution of this mystery calls for
much larger statistics than the reach of current observatories.Comment: 8 pages, 4 figures, in the Proceedings of TAUP 201
Studying the nuclear mass composition of Ultra-High Energy Cosmic Rays with the Pierre Auger Observatory
The Fluorescence Detector of the Pierre Auger Observatory measures the
atmospheric depth, , where the longitudinal profile of the high energy
air showers reaches its maximum. This is sensitive to the nuclear mass
composition of the cosmic rays. Due to its hybrid design, the Pierre Auger
Observatory also provides independent experimental observables obtained from
the Surface Detector for the study of the nuclear mass composition. We present
-distributions and an update of the average and RMS values in
different energy bins and compare them to the predictions for different nuclear
masses of the primary particles and hadronic interaction models. We also
present the results of the composition-sensitive parameters derived from the
ground level component.Comment: Proceedings of the 12th International Conference on Topics in
  Astroparticle and Underground Physics, TAUP 2011, Munich, German
Pluto: A Monte Carlo Simulation Tool for Hadronic Physics
Pluto is a Monte-Carlo event generator designed for hadronic interactions
from Pion production threshold to intermediate energies of a few GeV per
nucleon, as well as for studies of heavy ion reactions. This report gives an
overview of the design of the package, the included models and the user
interface.Comment: XI International Workshop on Advanced Computing and Analysis
  Techniques in Physics Research, April 23-27 2007, Amsterdam, the Netherland
Hadronic physics with the Pierre Auger Observatory
Extensive air showers are the result of billions of particle reactions initiated by single cosmic rays at ultra-high energy. Their characteristics are sensitive both to the mass of the primary cosmic ray and to the fine details of hadronic interactions. Ultra-high energy cosmic rays can be used to experimentally extend our knowledge on hadronic interactions in energy and kinematic regions beyond those tested by human-made accelerators. We report on how the Pierre Auger Observatory is able to measure the proton-air cross section for particle production at a center-of-mass energy per nucleon of 39 TeV and 56 TeV and also to constrain the new hadronic interaction models tuned after the results of the Large Hadron Collider, by measuring: the average shape of the electromagnetic longitudinal profile of air showers, the moments of the distribution of the depth at which they reach their maximum, and the content and production depth of muons in air showers with a primary center-of-mass energy per nucleon around and above the 100 TeV scale.Peer Reviewe
- …
