422 research outputs found
X-ray Emission from Magnetically Torqued Disks of Oe/Be Stars
We focus attention on the Oe/Be stars to test the concept that the disks of
these stars form by magnetic channeling of wind material toward the equator.
Calculations are made of the X-rays expected from the Magnetically Torqued Disk
(MTD) model for Be stars discussed by Cassinelli et al. (2002), by Maheswaran
(2003), and by Brown et al. (2004). The dominant parameters in the model are
the value of the velocity law, the rotation rate of the star, ,
and the ratio of the magnetic field energy density to the disk gravitational
energy density, .
The model predictions are compared with the observations obtained for
an O9.5 star Oph from \Berghofer et al. (1996) and for 7 Be stars from
Cohen et al. (1997). Extra considerations are also given here to the well
studied Oe star Oph for which we have observations of the
X-ray line profiles of the triad of He-like lines from the ion Mg XI.Comment: 28 pages with 6 figures. Accepted for publication in Ap
New Challenges For Wind Shock Models: The Chandra Spectrum Of The Hot Star Delta Orionis
The Chandra spectrum of delta Ori A shows emission lines from hydrogen- and helium-like states of Si, Mg, Ne, and O, along with N VII Lyalpha and lines from ions in the range Fe XVII-Fe XXI In contrast to the broad lines seen in zeta Pup and zeta Ori (850 +/- 40 and 1000 +/- 240 km s(-1) half-width at half-maximum [HWHM], respectively), these lines are broadened to only 430 +/- 60 km s(-1) HWHM. This is much lower than the measured wind terminal velocity of 2000 km s(-1). The forbidden, intercombination, and resonance (fir) lines from He-like ions indicate that the majority of the X-ray line emission does not originate at the base of the wind, in agreement with the standard wind shock models for these objects. However, in that model the X-ray emission is distributed throughout an expanding, X-ray-absorbing wind, and it is therefore surprising that the emission lines appear relatively narrow, unshifted, and symmetric. We compare the observed line profiles to recent detailed models for X-ray line pro le generation in hot stars, but none of them offers a fully satisfactory explanation for the observed line profiles
On the structure of covariant phase observables
We study the mathematical structure of covariant phase observables. Such an
observable can alternatively be expressed as a phase matrix, as a sequence of
unit vectors, as a sequence of phase states, or as an equivalent class of
covariant trace-preserving operations. Covariant generalized operator measures
are defined by structure matrices which form a W*-algebra with phase matrices
as its subset. The properties of the Radon-Nikodym derivatives of phase
probability measures are studied.Comment: 11 page
Collisionless Damping of Fast MHD Waves in Magneto-rotational Winds
We propose collisionless damping of fast MHD waves as an important mechanism
for the heating and acceleration of winds from rotating stars. Stellar rotation
causes magnetic field lines anchored at the surface to form a spiral pattern
and magneto-rotational winds can be driven. If the structure is a magnetically
dominated, fast MHD waves generated at the surface can propagate almost
radially outward and cross the field lines. The propagating waves undergo
collisionless damping owing to interactions with particles surfing on magnetic
mirrors that are formed by the waves themselves. The damping is especially
effective where the angle between the wave propagation and the field lines
becomes moderately large ( to ). The angle tends naturally
to increase into this range because the field in magneto-rotational winds
develops an increasingly large azimuthal component. The dissipation of the wave
energy produces heating and acceleration of the outflow. We show using
specified wind structures that this damping process can be important in both
solar-type stars and massive stars that have moderately large rotation rates.
This mechanism can play a role in coronae of young solar-type stars which are
rapidly rotating and show X-ray luminosities much larger than the sun. The
mechanism could also be important for producing the extended X-ray emitting
regions inferred to exist in massive stars of spectral type middle B and later.Comment: 12 pages, including 7 figures, accepted for publication in Ap
An Extensive Collection of Stellar Wind X-ray Source Region Emission Line Parameters,Temperatures, Velocities, and Their Radial Distributions as Obtained from Chandra Observations of 17 OB Stars
Chandra high energy resolution observations have now been obtained from
numerous non-peculiar O and early B stars. The observed X-ray emission line
properties differ from pre-launch predictions, and the interpretations are
still problematic. We present a straightforward analysis of a broad collection
of OB stellar line profile data to search for morphological trends. X-ray line
emission parameters and the spatial distributions of derived quantities are
examined with respect to luminosity class. The X-ray source locations and their
corresponding temperatures are extracted by using the He-like f/i line ratios
and the H-like to He-like line ratios respectively. Our luminosity class study
reveals line widths increasing with luminosity. Although the majority of the OB
emission lines are found to be symmetric, with little central line
displacement, there is evidence for small, but finite, blue-ward line-shifts
that also increase with luminosity. The spatial X-ray temperature distributions
indicate that the highest temperatures occur near the star and steadily
decrease outward. This trend is most pronounced in the OB supergiants. For the
lower density wind stars, both high and low X-ray source temperatures exist
near the star. However, we find no evidence of any high temperature X-ray
emission in the outer wind regions for any OB star. Since the temperature
distributions are counter to basic shock model predictions, we call this the
"near-star high-ion problem" for OB stars. By invoking the traditional OB
stellar mass loss rates, we find a good correlation between the fir-inferred
radii and their associated X-ray continuum optical depth unity radii. We
conclude by presenting some possible explanations to the X-ray source problems
that have been revealed by this study.Comment: Published in 2007, ApJ, 668, 456. An Erratum scheduled for
publication in 2008, ApJ, 680, is included as an Appendix. The Erratum
corrects some tabulated data in 5 tables and 2 figure
The Correlation between X-Ray Line Ionization and Optical Spectral Types of the OB Stars
Marked correlations are reported between the ionization of the X-ray line
spectra of normal OB stars, as observed by the Chandra X-Ray Observatory, and
their optical spectral types. These correlations include the progressive
weakening of the higher ionization relative to the lower ionization X-ray lines
with advancing spectral type, and the similarly decreasing intensity ratios of
the H-like to He-like lines of the alpha ions. These relationships were not
predicted by models, nor have they been clearly evident in astrophysical
studies of a few objects; rather, they have emerged from morphological analysis
of an adequate (albeit still small) sample, from which known peculiar objects
such as magnetic stars and very rapid rotators have been isolated to reveal the
normal trends. This process is analogous to that which first demonstrated the
strong relationships between the UV wind profiles and the optical spectral
types of normal OB stars, which likely bear a physical as well as a historical
connection to the present X-ray results. Since the optical spectral types are
calibrated in terms of fundamental stellar parameters, it follows that the
winds and X-ray spectra are determined by the latter. These observations
provide strong guidance for further astrophysical modeling of these phenomena.Comment: 19 pages, 7 figures, 2 tables; ApJ accepte
On the realization of Symmetries in Quantum Mechanics
The aim of this paper is to give a simple, geometric proof of Wigner's
theorem on the realization of symmetries in quantum mechanics that clarifies
its relation to projective geometry. Although several proofs exist already, it
seems that the relevance of Wigner's theorem is not fully appreciated in
general. It is Wigner's theorem which allows the use of linear realizations of
symmetries and therefore guarantees that, in the end, quantum theory stays a
linear theory. In the present paper, we take a strictly geometrical point of
view in order to prove this theorem. It becomes apparent that Wigner's theorem
is nothing else but a corollary of the fundamental theorem of projective
geometry. In this sense, the proof presented here is simple, transparent and
therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page
Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart
Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs
- …
