132 research outputs found
Vibration response imaging: protocol for a systematic review.
The concept of lung sounds conveying information regarding lung physiology has been used extensively in clinical practice, particularly with physical auscultation using a stethoscope. Advances in computer technology have facilitated the construction of dynamic visual images derived from recorded lung sounds. Arguably, the most significant progress in this field was the development of the commercially available vibration response imaging (VRI) (Deep Breeze Ltd, Or-Akiva, Israel). This device provides a non-invasive, dynamic image of both lungs constructed from sounds detected from the lungs using surface sensors. In the literature, VRI has been utilized in a multitude of clinical and research settings. This systematic review aims to address three study questions relating to whether VRI can be used as an evaluative device, whether the images generated can be characterized, and which tools and measures have been used to assess these images. This systematic review will involve implementing search strategies in five online journal databases in order to extract articles relating to the application of VRI. Appropriate articles will be identified against a set of pre-determined eligibility criteria and assessed for methodological quality using a standardized scale. Included articles will have data extracted by the reviewers using a standardized evidence table. A narrative synthesis based on a standardized framework will be conducted, clustering evidence into three main groups; one for each of the study questions. A meta-analysis will be conducted if two or more research articles meet pre-determined criteria that allow quantitative synthesis to take place. This systematic review aims to provide a complete overview of the scope of VRI in the clinical and research settings, as well as to discuss methods to interpret the data obtained from VRI. The systematic review intends to help clinicians to make informed decisions on the clinical applicability of the device, to allow researchers to identify further potential avenues of investigation, and to provide methods for the evaluation and interpretation of dynamic and static images. The publication and registration of this review with PROSPERO provides transparency and accountability, and facilitates the appraisal of the proposed systematic review against the original design. PROSPERO registration number: CRD42013003751
Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study)
BACKGROUND: The EMiC2 membrane is a medium cut-off haemofilter (45 kiloDalton). Little is known regarding its efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-venous haemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance. METHODS: This was a prospective observational study conducted in critically ill patients with sepsis and acute kidney injury requiring kidney replacement therapy. We measured concentrations of 12 cytokines [Interleukin (IL) IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, vascular endothelial growth factor, monocyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF)] in plasma at baseline (T0) and pre- and post-dialyzer at 1, 6, 24, and 48 h after CVVHD initiation and in the effluent fluid at corresponding time points. Outcomes were the effluent and adsorptive clearance rates, mass balances, and changes in serial serum concentrations. RESULTS: Twelve patients were included in the final analysis. All cytokines except EGF concentrations declined over 48 h (p < 0.001). The effluent clearance rates were variable and ranged from negligible values for IL-2, IFN-γ, IL-1α, IL-1β, and EGF, to 19.0 ml/min for TNF-α. Negative or minimal adsorption was observed. The effluent and adsorptive clearance rates remained steady over time. The percentage of cytokine removal was low for most cytokines throughout the 48-h period. CONCLUSION: EMiC2-CVVHD achieved modest removal of most cytokines and demonstrated small to no adsorptive capacity despite a decline in plasma cytokine concentrations. This suggests that changes in plasma cytokine concentrations may not be solely influenced by extracorporeal removal. TRIAL REGISTRATION: NCT03231748, registered on 27th July 2017
Airway Pressure Release Ventilation for lung protection in acute respiratory distress syndrome: an alternative way to recruit the lungs
Purpose of reviewAirway pressure release ventilation (APRV) is a modality of ventilation in which high inspiratory continuous positive airway pressure (CPAP) alternates with brief releases. In this review, we will discuss the rationale for APRV as a lung protective strategy and then provide a practical introduction to initiating APRV using the time-controlled adaptive ventilation (TCAV) method.Recent findingsAPRV using the TCAV method uses an extended inspiratory time and brief expiratory release to first stabilize and then gradually recruit collapsed lung (over hours/days), by progressively 'ratcheting' open a small volume of collapsed tissue with each breath. The brief expiratory release acts as a 'brake' preventing newly recruited units from re-collapsing, reversing the main drivers of ventilator-induced lung injury (VILI). The precise timing of each release is based on analysis of expiratory flow and is set to achieve termination of expiratory flow at 75% of the peak expiratory flow. Optimization of the release time reflects the changes in elastance and, therefore, is personalized (i.e. conforms to individual patient pathophysiology), and adaptive (i.e. responds to changes in elastance over time).SummaryAPRV using the TCAV method is a paradigm shift in protective lung ventilation, which primarily aims to stabilize the lung and gradually reopen collapsed tissue to achieve lung homogeneity eliminating the main mechanistic drivers of VILI.</p
Physiotherapist prediction of extubation outcome in the adult intensive care unit
Objective
Most patients requiring intubation and mechanical ventilation are extubated successfully at the first attempt; however, a minority experience extubation failure, which is associated with increased risk of ventilator‐associated pneumonia, prolonged intensive care unit (ICU) length of stay and mortality. Physiotherapists have expertise to assess cough strength, work of breathing, respiratory muscle strength, and respiratory secretion load, which are important factors in the outcome of extubation. Accurate prediction of extubation outcome could help to inform management plans pre‐extubation and postextubation. The primary objective of this service evaluation was to report the accuracy of physiotherapists' prediction of extubation outcome in the adult ICU.
Methods
A single‐centre case note review was undertaken. All subjects who received a physiotherapy assessment of extubation suitability prior to extubation between January and March 2016 in the adult ICU of a large teaching hospital in the United Kingdom were included. Assessment, by both specialist and nonspecialist physiotherapists—which included risk stratification of extubation failure as “high,” “moderate,” or “low”—was undertaken prior to extubation. Logistic regression analysis was performed to determine which pre‐extubation factors were predictive of extubation outcome.
Results
During the evaluation period, 68 subjects were extubated following a physiotherapy assessment. Physiotherapy risk stratification as “high risk” (OR 4; 95% confidence interval, CI, [1.312]; p=0.009) and “inappropriate” neurological status (OR 3.3; 95% CI [1.0410]; p=0.037) were the only pre‐extubation factors significantly associated with extubation failure. Assessment by specialist physiotherapists demonstrated greater sensitivity (100% vs. 22%) but lower specificity (68% vs. 95%) to detect extubation failure compared with the assessment performed by nonspecialist physiotherapists.
Conclusion
Patients classified as “high risk” of extubation failure by a physiotherapist are significantly more likely to fail extubation. Specialist physiotherapists should be involved in the decision to extubate patients in the adult ICU
Acute Respiratory Distress Syndrome:The Berlin Definition
The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European
Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories
of ARDS based on degree of hypoxemia: mild (200 mm HgPaO2/FIO2300 mmHg), moderate (100mmHgPaO2/FIO2200mmHg), and severe (PaO2/FIO2100mmHg) and 4 ancillary variables for severe ARDS: radiographic severity,
respiratory system compliance (40 mL/cm H2O), positive endexpiratory pressure (10 cm H2O), and corrected expired volume per minute(10 L/min). The draft Berlin Definition was empirically evaluated using patientlevel meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data
sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition.
Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%;95%CI, 24%-30%; 32%;95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P.001) and increased
median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively;
P.001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553;
P.001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better
inform clinical care, research, and health services planning
Solarization in a forest nursery : Effect on ectomycorrhizal soil infectivity and soil receptiveness to inoculation with Laccaria bicolor
Field experiments were carried out in a forest nursery during the summer of 1994 to examine the effect of soil solarization on ectomycorrhizal soil infectivity (ESI) and soil receptiveness to inoculation with Laccaria bicolor. Soil samples from solarized, steamed, fumigated and untreated plots were periodically collected and assayed for ESI. Untreated soil exhibited high ESI. Solarization was as effective as steaming or fumigation in reducing ESI in the uppermost layer. Solarization with a double layer of polyethylene film and fumigation were the only treatments which reduced ESI deeper in the soil. During July, the temperature of covered beds reached 50 °C at a soil depth of 5 cm. Ectomycorrhizal fungi were among the soil-borne fungi most sensitive to solar heating. Soil solarization provides an effective disinfection method for controlled mycorrhization in forest nurseries.Facultad de Ciencias Agrarias y Forestale
- …