16,271 research outputs found

    On Galois-Division Multiple Access Systems: Figures of Merit and Performance Evaluation

    Full text link
    A new approach to multiple access based on finite field transforms is investigated. These schemes, termed Galois-Division Multiple Access (GDMA), offer compact bandwidth requirements. A new digital transform, the Finite Field Hartley Transform (FFHT) requires to deal with fields of characteristic p, p \neq 2. A binary-to-p-ary (p \neq 2) mapping based on the opportunistic secondary channel is introduced. This allows the use of GDMA in conjunction with available digital systems. The performance of GDMA is also evaluated.Comment: 6 pages, 4 figures. In: XIX Simposio Brasileiro de Telecomunicacoes, 2001, Fortaleza, CE, Brazi

    Spectroscopic confirmation of the planetary nebula nature of PM1-242, PM1-318 and PM1-333 and morphological analysis of the nebulae

    Full text link
    We present intermediate resolution long-slit spectra and narrow-band Halpha, [NII] and [OIII] images of PM1-242, PM318 and PM1-333, three IRAS sources classified as possible planetary nebulae. The spectra show that the three objects are true planetary nebulae and allow us to study their physical properties; the images provide a detailed view of their morphology. PM1-242 is a medium-to-high-excitation (e.g., HeII4686/Hbeta ~0.4; [NII]6584/Halpha ~0.3) planetary nebula with an elliptical shape containing [NII] enhanced point-symmetric arcs. An electron temperature [Te([SIII])] of ~10250 K and an electron density [Ne([SII])] of ~2300 cm-3 are derived for PM1-242. Abundance calculations suggest a large helium abundance (He/H ~0.29) in PM1-242. PM1-318 is a high-excitation (HeII4686/Hbeta ~1) planetary nebula with a ring-like inner shell containing two enhanced opposite regions, surrounded by a fainter round attached shell brighter in the light of [OIII]. PM1-333 is an extended planetary nebula with a high-excitation (HeII4686/Hbeta up to ~0.9) patchy circular main body containing two low-excitation knotty arcs. A low Ne([SII]) of ~450 cm-3 and Te([OIII]) of ~15000 K are derived for this nebula. Abundance calculations suggest that PM1-333 is a type I planetary nebula. The lack of a sharp shell morphology, low electron density, and high-excitation strongly suggest that PM1-333 is an evolved planetary nebula. PM1-333 also shows two low-ionization polar structures whose morphology and emission properties are reminiscent of collimated outflows. We compare PM1-333 with other evolved planetary nebulae with collimated outflows and find that outflows among evolved planetary nebulae exhibit a large variety of properties, in accordance with these observed in younger planetary nebula.Comment: Accepted in The Astronomical Journal, 23 pages, 6 figure

    Continuous spectra in high-harmonic generation driven by multicycle laser pulses

    Get PDF
    We present observations of the emission of XUV continua in the 20-37 eV region by high harmonic generation (HHG) with 44-7 fs7\ \mathrm{fs} pulses focused onto a Kr gas jet. The underlying mechanism relies on coherent control of the relative delays and phases between individually generated attosecond pulse, achievable by adjusting the chirp of the driving pulses and the interaction geometry. Under adequate negative chirp and phase matching conditions, the resulting interpulse interference yields a continuum XUV spectrum, which is due to both microscopic and macroscopic (propagation) contributions. This technique opens the route for modifying the phase of individual attosecond pulses and for the coherent synthesis of XUV continua from multicycle driving laser pulses without the need of an isolated attosecond burst.Comment: 14 pages, 5 figures. Submitted to Physical Review
    corecore