34 research outputs found

    A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling

    Get PDF
    Background: Molecular markers and knowledge of traits associated with heat tolerance are likely to provide breeders with a more efficient means of selecting wheat varieties able to maintain grain size after heat waves during early grain filling. Results: A population of 144 doubled haploids derived from a cross between the Australian wheat varieties Drysdale and Waagan was mapped using the wheat Illumina iSelect 9,000 feature single nucleotide polymorphism marker array and used to detect quantitative trait loci for heat tolerance of final single grain weight and related traits. Plants were subjected to a 3 d heat treatment (37 °C/27 °C day/night) in a growth chamber at 10 d after anthesis and trait responses calculated by comparison to untreated control plants. A locus for single grain weight stability was detected on the short arm of chromosome 3B in both winter- and autumn-sown experiments, determining up to 2.5 mg difference in heat-induced single grain weight loss. In one of the experiments, a locus with a weaker effect on grain weight stability was detected on chromosome 6B. Among the traits measured, the rate of flag leaf chlorophyll loss over the course of the heat treatment and reduction in shoot weight due to heat were indicators of loci with significant grain weight tolerance effects, with alleles for grain weight stability also conferring stability of chlorophyll ('stay-green') and shoot weight. Chlorophyll loss during the treatment, requiring only two non-destructive readings to be taken, directly before and after a heat event, may prove convenient for identifying heat tolerant germplasm. These results were consistent with grain filling being limited by assimilate supply from the heat-damaged photosynthetic apparatus, or alternatively, accelerated maturation in the grains that was correlated with leaf senescence responses merely due to common genetic control of senescence responses in the two organs. There was no evidence for a role of mobilized stem reserves (water soluble carbohydrates) in determining grain weight responses. Conclusions: Molecular markers for the 3B or 6B loci, or the facile measurement of chlorophyll loss over the heat treatment, could be used to assist identification of heat tolerant genotypes for breeding.Hamid Shirdelmoghanloo, Julian D. Taylor, Iman Lohraseb, Huwaida Rabie, Chris Brien, Andy Timmins, Peter Martin, Diane E. Mather, Livinus Emebiri and Nicholas C. Collin

    Boron toxicity tolerance in wheat and barley: Australian perspectives

    No full text
    Boron (B) toxicity is a significant constraint to cereal production in regions worldwide, including parts of southern Australia. In recent years, much progress has been made by research groups investigating the molecular and physiological mechanisms involved in B toxicity tolerance in both barley (Hordeum vulgare L.) and wheat (Triticum sp. L.). In barley, genes have been identified controlling B tolerance at two of the four known B toxicity tolerance loci, both of which encode B transporters. Progress has also been made towards the identification of genes involved in B toxicity tolerance in wheat. Here we describe the current status of this work, in the context of B toxicity tolerance research in Australia and internationally. We also summarize prospects for breeding new cereal varieties with B toxicity tolerance in the future.Thorsten Schnurbusch, Julie Hayes and Tim Sutto

    Chromosomal loci associated with endosperm hardness in a malting barley cross

    No full text
    A breeding objective for the malting barley industry is to produce lines with softer, plumper grain containing more likely to imbibe water readily and contain more starch per grain, which in turn produces higher levels of malt extract. In a malting barley mapping population, ‘Arapiles’ x ‘Franklin’, the most significant and robust quantitative trait locus (QTL) for endosperm hardness was observed on the short arm of chromosome 1H, across three environments over two growing seasons. This accounted for 22.6% (Horsham 2000), 26.8% (Esperance 2001), and 12.0% (Tarranyurk 2001) of the genetic variance and significantly increased endosperm hardness by 2.06–3.03 SKCS hardness units. Interestingly, Arapiles and Franklin do not vary in Ha locus alleles. Therefore, this region, near the centromere on chromosome 1H, may be of great importance when aiming to manipulate endosperm hardness and malting quality. Interestingly, this region, close to the centromere on chromosome 1H, in our study, aligns with the region of the genome that includes the HvCslF9 and the HvGlb1 genes. Potentially, one or both of these genes could be considered to be candidate genes that influence endosperm hardness in the barley grain. Additional QTLs for endosperm hardness were detected on chromosomes 2H, 3H, 6H and 7H, confirming that the hardness trait in barley is complex and multigenic, similar to many malting quality traits of interest
    corecore