33 research outputs found
Recommended from our members
Stochastic modelling of the effects of interdependencies between critical infrastructure
An approach to Quantitative Interdependency Analysis, in the context of Large Complex Critical Infrastructures, is presented in this paper. A Discrete stateâspace, Continuousâtime, Stochastic Process models the operation of critical infrastructure, taking interdependencies into account. Of primary interest are the implications of both model detail (that is, level of model abstraction) and model parameterisation for the study of dependencies. Both of these factors are observed to affect the distribution of cascadeâsizes within and across infrastructure
The role of asymmetric prediction losses in smart charging of electric vehicles
Climate change prompts humanity to look for decarbonisation opportunities, and a viable option is to supply electric vehicles with renewable energy. The stochastic nature of charging demand and renewable generation requires intelligent charging driven by predictions of charging behaviour. The conventional prediction models of charging behaviour usually minimise the quadratic loss function. Moreover, the adequacy of predictions is almost solely evaluated by accuracy measures, disregarding the consequences of prediction losses in an application context. Here, we study the role of asymmetric prediction losses which enable balancing the over- and under-predictions and adjust predictions to smart charging algorithms. Using the main classes of machine learning methods, we trained prediction models of the connection duration and compared their performance for various asymmetries of the loss function. In addition, we proposed a methodological approach to quantify the consequences of prediction losses on the performance of selected archetypal smart charging schemes. In concrete situations, we demonstrated that an appropriately selected degree of the loss function asymmetry is crucial as it almost doubles the price range where the smart charging is beneficial, and increases the extent to which the charging demand is satisfied up to 40%. Additionally, the proposed methods improve charging fairness since the distribution of unmet charging demand across vehicles becomes more homogeneous.IA4TES MIA.2021.M04.000
Role of Network Topology in the Synchronization of Power Systems
We study synchronization dynamics in networks of coupled oscillators with
bimodal distribution of natural frequencies. This setup can be interpreted as a
simple model of frequency synchronization dynamics among generators and loads
working in a power network. We derive the minimum coupling strength required to
ensure global frequency synchronization. This threshold value can be
efficiently found by solving a binary optimization problem, even for large
networks. In order to validate our procedure, we compare its results with
numerical simulations on a realistic network describing the European
interconnected high-voltage electricity system, finding a very good agreement.
Our synchronization threshold can be used to test the stability of frequency
synchronization to link removals. As the threshold value changes only in very
few cases when aplied to the European realistic network, we conclude that
network is resilient in this regard. Since the threshold calculation depends on
the local connectivity, it can also be used to identify critical network
partitions acting as synchronization bottlenecks. In our stability experiments
we observe that when a link removal triggers a change in the critical
partition, its limits tend to converge to national borders. This phenomenon,
which can have important consequences to synchronization dynamics in case of
cascading failure, signals the influence of the uncomplete topological
integration of national power grids at the European scale.Comment: The final publication is available at http://www.epj.org (see
http://www.springerlink.com/content/l22k574x25u6q61m/
Cascade Failure in a Phase Model of Power Grids
We propose a phase model to study cascade failure in power grids composed of
generators and loads. If the power demand is below a critical value, the model
system of power grids maintains the standard frequency by feedback control. On
the other hand, if the power demand exceeds the critical value, an electric
failure occurs via step out (loss of synchronization) or voltage collapse. The
two failures are incorporated as two removal rules of generator nodes and load
nodes. We perform direct numerical simulation of the phase model on a
scale-free network and compare the results with a mean-field approximation.Comment: 7 pages, 2 figure
Self-Control of Traffic Lights and Vehicle Flows in Urban Road Networks
Based on fluid-dynamic and many-particle (car-following) simulations of
traffic flows in (urban) networks, we study the problem of coordinating
incompatible traffic flows at intersections. Inspired by the observation of
self-organized oscillations of pedestrian flows at bottlenecks [D. Helbing and
P. Moln\'ar, Phys. Eev. E 51 (1995) 4282--4286], we propose a self-organization
approach to traffic light control. The problem can be treated as multi-agent
problem with interactions between vehicles and traffic lights. Specifically,
our approach assumes a priority-based control of traffic lights by the vehicle
flows themselves, taking into account short-sighted anticipation of vehicle
flows and platoons. The considered local interactions lead to emergent
coordination patterns such as ``green waves'' and achieve an efficient,
decentralized traffic light control. While the proposed self-control adapts
flexibly to local flow conditions and often leads to non-cyclical switching
patterns with changing service sequences of different traffic flows, an almost
periodic service may evolve under certain conditions and suggests the existence
of a spontaneous synchronization of traffic lights despite the varying delays
due to variable vehicle queues and travel times. The self-organized traffic
light control is based on an optimization and a stabilization rule, each of
which performs poorly at high utilizations of the road network, while their
proper combination reaches a superior performance. The result is a considerable
reduction not only in the average travel times, but also of their variation.
Similar control approaches could be applied to the coordination of logistic and
production processes