724 research outputs found
From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds
We report on structural, magnetic and magnetocaloric properties of
MnxFe1.95-xP0.50Si0.50 (x > 1.10) compounds. With increasing the Mn:Fe ratio, a
first-order magneto-elastic transition gradually changes into a first-order
magneto-structural transition via a second-order magnetic transition. The study
also shows that thermal hysteresis can be tuned by varying the Mn:Fe ratio.
Small thermal hysteresis (less than 1 K) can be obtained while maintaining a
giant magnetocaloric effect. This achievement paves the way for real
refrigeration applications using magnetic refrigerants.Comment: 4 pages, 3 figures, Supplemental Materia
Reconfiguring experimental archaeology using 3D reconstruction
Experimental archaeology has long yielded valuable insights into the tools and techniques that featured in past peoples’ relationship with the material world around them. We can determine, for example, how many trees would need to be felled to construct a large round-house of the southern British Iron Age (over one hundred), infer the exact angle needed to strike a flint core in order to knap an arrowhead in the manner of a Neolithic hunter-gatherer, or recreate the precise environmental conditions needed to store grain in underground silos over the winter months, with only the technologies and materials available to Romano-Briton villagers (see Coles 1973; Reynolds 1993). However, experimental archaeology has, hitherto, confined itself to rather rigid, empirical and quantitative questions such as those posed in these examples. This is quite understandable, and in line with good scientific practice, which stipulates that any ‘experiment’ must be based on replicable data, and be reproducible. Despite their potential in this area however, it is notable that digital reconstruction technologies have yet to play a significant role in experimental archaeology. Whilst many excellent examples of digital 3D reconstruction of heritage sites exist (for example the Digital Roman Forum project: http://dlib.etc.ucla.edu/projects/Forum) most, if not all, of these are characterized by a drive to establish a photorealistic re-creation of physical features. This paper will discuss possibilities that lie beyond straightforward positivist re-creation of heritage sites, in the experimental reconstruction of intangible heritage. Between 2010 and 2012, the authors led the Motion in Place Platform project (MiPP: http://www.motioninplace.org/), a capital grant under the AHRC's DEDEFI scheme developing motion capture and analysis tools for exploring how people move through spaces. In the course of MiPP, a series of experiments were conducted using motion capture hardware and software at the Silchester Roman town archaeological excavation in Hampshire, and at the Butser Ancient Farm facility, where Romano-British and Iron Age dwellings have been constructed according to the best experimental practice. As well as reconstructing such Roman and early British dwellings in 3D, the authors were able to use motion capture to reconstruct the kind of activities that – according to the material evidence – are likely to have been carried out by the occupants who used them. Bespoke motion capture suits developed for the project were employed, and the traces captured and rendered with a combination of Autodesk and Unity3D software. This sheds new light on how the reconstructed spaces - and, by inference, their ancient counterparts - were most likely to have been used. In particular the exercises allowed the evaluation and visualisation of changes in behaviour which occur as a result of familiarity with an environment and the acquisition of expertise over time; and to assess how interaction between different actors affects how everyday tasks are carried out
Element-Specific Depth Profile of Magnetism and Stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 Interface
Depth-sensitive magnetic, structural and chemical characterization is
important in the understanding and optimization of novel physical phenomena
emerging at interfaces of transition metal oxide heterostructures. In a
simultaneous approach we have used polarized neutron and resonant X-ray
reflectometry to determine the magnetic profile across atomically sharp
interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers
with sub-nanometer resolution. In particular, the X-ray resonant magnetic
reflectivity measurements at the Fe and Mn resonance edges allowed us to
determine the element specific depth profile of the ferromagnetic moments in
both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a
magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in
contrast to previous observations on inversely deposited layers. Additional
resonant X-ray reflection measurements indicate a region of an altered Mn- and
O-content at the interface, with a thickness matching that of the magnetic
diluted layer, as origin of the reduction of the magnetic moment.Comment: 13 pages, 4 figures, supplemental material include
- …