2,219 research outputs found

    The First Spectroscopically Resolved Sub-parsec Orbit of a Supermassive Binary Black Hole

    Get PDF
    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole system in their cores. Here we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically applied for spectroscopic binary stars we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for an eccentric, sub-parsec Keplerian orbit of a 15.9-year period. The flux maximum in the lightcurve correspond to the approaching phase of a secondary component towards the observer. According to the obtained results we speculate that the periodic variations in the observed H{\alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into black hole mass growth process.Comment: 29 pages, 10 figures, published in ApJ, 759, 11

    Black hole mass estimates in quasars - A comparative analysis of high- and low-ionization lines

    Get PDF
    The inter-line comparison between high- and low-ionization emission lines has yielded a wealth of information on the quasar broad line region (BLR) structure and dynamics, including perhaps the earliest unambiguous evidence in favor of a disk + wind structure in radio-quiet quasars. We carried out an analysis of the CIV 1549 and Hbeta line profiles of 28 Hamburg-ESO high luminosity quasars and of 48 low-z, low luminosity sources in order to test whether the high-ionization line CIV 1549 width could be correlated with Hbeta and be used as a virial broadening estimator. We analyze intermediate- to high-S/N, moderate resolution optical and NIR spectra covering the redshifted CIV and Hβ\beta over a broad range of luminosity log L ~ 44 - 48.5 [erg/s] and redshift (0 - 3), following an approach based on the quasar main sequence. The present analysis indicates that the line width of CIV 1549 is not immediately offering a virial broadening estimator equivalent to Hβ\beta. At the same time a virialized part of the BLR appears to be preserved even at the highest luminosities. We suggest a correction to FWHM(CIV) for Eddington ratio (using the CIV blueshift as a proxy) and luminosity effects that can be applied over more than four dex in luminosity. Great care should be used in estimating high-L black hole masses from CIV 1549 line width. However, once corrected FWHM(CIV) values are used, a CIV-based scaling law can yield unbiased MBH values with respect to the ones based on Hβ\beta with sample standard deviation ~ 0.3 dex.Comment: 43 pages, 15 Figures, submitted to A&

    Detailed Analysis of Balmer Lines in a Sloan Digital Sky Survey Sample of 90 Broad Line Active Galactic Nuclei

    Full text link
    In order to contribute to the general effort aiming at the improvement of our knowledge about the physical conditions within the Broad Line Region (BLR) of Active Galactic Nuclei (AGN), here we present the results achieved by our analysis of the spectral properties of a sample of 90 broad line emitting sources, collected at the Sloan Digital Sky Survey (SDSS) database. By focusing our attention mainly onto the Balmer series of hydrogen emission lines, which is the dominant feature in the optical wavelength range of many BLR spectra, we extracted several flux and profile measurements, which we related to other source properties, such as optical continuum luminosities, inferred black hole masses, and accretion rates. Using the Boltzmann Plot method to investigate the Balmer line flux ratios as a function of the line profiles, we found that broader line emitting AGN typically have larger H_alpha / H_beta and smaller H_gamma / H_beta and H_delta / H_beta line ratios. With the help of some recent investigations, we model the structure of the BLR and we study the influence of the accretion process on the properties of the BLR plasma.Comment: 14 pages, 11 figures, fixes the wrong names of 4 objects; published on Ap

    Development of conductive paraffin/graphene films laminated on fluoroelastomers with high strain recovery and anti-corrosive properties

    Get PDF
    NMP is supported by the European Research Council (ERC PoC 2015 SILKENE nr. 693670) and by the European Commission H2020 under the Graphene Flagship (WP14 “Polymer composites”, n. 696656) and under the FET Proactive (“Neurofibres” no. 732344). Nanesa srl is acknowledged for supporting us with FESEM analysis

    Transparent and conductive graphene oxide-polyethylenglycol diacrylate coatings obtained by photopolymerization

    Full text link
    Water dispersed graphene oxide sheets were used to prepare graphene-polyethylenglycol diacrylate resin composites by photopolymerization. It was found that graphene sheets undergo excellent morphological distribution within the resin system, giving rise to transparent composites with unaltered thermal properties with respect to the neat resin, that are electrically conductive at loading ratios as low as 0.02 %wt of graphene oxide . The proposed strategy based on photopolymerization provides an easy, energy-saving and environmental friendly technique that can find a wide application in coating technology, mainly for electromagnetic shielding and antistatic coatings.Comment: 17 pages, 7 figures, 1 table, accepted for Macromolecular Materials & Engineerin

    Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties

    Get PDF
    In this article, we examine the effects of two different nanostructured carbons when they are incorporated in a rubber matrix in terms of mechanical and electrical properties as well as the icephobic behaviour of the nanocomposites when swollen. Nitrile butadiene rubber composites reinforced with thermally reduced graphene oxide or multiwalled carbon nanotubes or both of them were prepared and characterized. At a particular hybrid filler loading, tensile and electrical tests showed a significant improvement of the composite. From the swelling studies, after the immersion, the nanocomposites experienced a reduction of the cross-link density that promotes weakening of ice adhesion, being this effect more evident for those samples prepared with hybrid fillers. In view of the composite formulations, that utilize commercially available elastomers and fillers, these findings would be applicable to the automotive and aviation sectors, where the demand for multifunctional rubbers is increasing.N.M.P. is supported by the European Commission H2020 under the Graphene Flagship Core 1 No. 696656 (WP14 00Polymer composites>) and FET Proactive >Neurofibres> grant No. 732344. M.A.L.M. thanks the support from the MINECO project MAT2016- 81138-R. SERMS srl (Terni - Italy) is kindly aknowledged for aging the composites in climatic chamberPeer Reviewe
    • …
    corecore