388 research outputs found

    Discovery of blue companions to two southern Cepheids: WW Car and FN Vel

    Get PDF
    A large number of high-dispersion spectra of classical Cepheids were obtained in the region of the CaII H+K spectral lines. The analysis of these spectra allowed us to detect the presence of a strong Balmer line, Hϵ\epsilon, for several Cepheids, interpreted as the signature of a blue companion: the presence of a sufficiently bright blue companion to the Cepheid results in a discernible strengthening of the CaII H + Hepsilon line relative to the CaII K line. We investigated 103 Cepheids, including those with known hot companions (B5-B6 main-sequence stars) in order to test the method. We could confirm the presence of a companion to WW Car and FN Vel (the existence of the former was only suspected before) and we found that these companions are blue hot stars. The method remains efficient when the orbital velocity changes in a binary system cannot be revealed and other methods of binarity detection are not efficient.Comment: 6 pages, 5 figures, 4 tables, published on MNRAS in March 201

    Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis.

    Get PDF
    11 p.-4 fig.-1 tab.Background: Increased circulating levels of endoglin+ endothelial microparticles (EMPs) have been identified in several cardiovascular disorders, related to severity. Endoglin is an auxilary receptor for transforming growth factor β (TGF-β) important in the regulation of vascular structure.Results: We quantified the number of microparticles in plasma of six patients with chronic thromboembolic pulmonary hypertension (CTEPH) and age- and sex-matched pulmonary embolic (PE) and healthy controls and investigated the role of microparticle endoglin in the regulation of pulmonary endothelial function in vitro. Results show significantly increased levels of endoglin+ EMPs in CTEPH plasma, compared to healthy and disease controls. Co-culture of human pulmonary endothelial cells with CTEPH microparticles increased intracellular levels of endoglin and enhanced TGF-β-induced angiogenesis and Smad1,5,8 phosphorylation in cells, without affecting BMPRII expression. In an in vitro model, we generated endothelium-derived MPs with enforced membrane localization of endoglin. Co-culture of these MPs with endothelial cells increased cellular endoglin content, improved cell survival and stimulated angiogenesis in a manner similar to the effects induced by overexpressed protein.Conclusions: Increased generation of endoglin+ EMPs in CTEPH is likely to represent a protective mechanism supporting endothelial cell survival and angiogenesis, set to counteract the effects of vascular occlusion and endothelial damage.This research was supported by a project grant (PG 11/13/28765) from the British Heart Foundation and by grants from Ministerio de Economia y Competitividad of Spain (SAF2013-43421-R to CB)Peer reviewe

    Anomalous pressure effect on the magnetic ordering in multiferroic BiMnO3

    Full text link
    We report the magnetic field dependent dc magnetization and the pressure-dependent (pmax ~ 16 kbar) ac susceptibilities Xp(T) on both powder and bulk multiferroic BiMnO3 samples, synthesized in different batches under high pressure. A clear ferromagnetic (FM) transition is observed at TC ~ 100 K, and increases with magnetic field. The magnetic hysteresis behavior is similar to that of a soft ferromagnet. Ac susceptibility data indicate that both the FM peak and its temperature (TC) decrease simultaneously with increasing pressure. Interestingly, above a certain pressure (9 ~ 11 kbar), another peak appears at Tp ~ 93 K, which also decreases with increasing pressure, with both these peaks persisting over some intermediate pressure range (9 ~ 13 kbar). The FM peak disappears with further application of pressure; however, the second peak survives until present pressure limit (pmax ~ 16 kbar). These features are considered to originate from the complex interplay of the magnetic and orbital structure of BiMnO3 being affected by pressure.Comment: 4 pages,4 figures, publised in Physical Review B 78, 092404/200

    Визначення поняття "Контроль за вчиненням злочину" у КПК України

    Get PDF
    Бєлік Л. С. Визначення поняття "Контроль за вчиненням злочину" у КПК України / Л. С. Бєлік // Правові та інституційні механізми забезпечення розвитку держави та права в умовах євроінтеграції : матеріали Міжнародної науково-практичної конференції (20 травня 2016 р., м. Одеса) : у 2 т. Т. 2 / відп. ред. М. В. Афанасьєва. - Одеса : Юридична література, 2016. - С. 382-384

    Multiple magnetic transitions in multiferroic BiMnO3

    Full text link
    The magnetic phase variations under hydrostatic pressure on multiferroic BiMnO3 have been examined by the dc magnetization [Mg(T)], magnetic hysteresis [Ueff(H)], and ac susceptibility [X'g(T)]. Three magnetic transitions, manifested as kinks I, II, and III on the Mg(T)], curves, were identified at 8.7 and 9.4 kbar. With increasing pressure, transition temperatures of kink I and kink II TkI and TkII tend to decrease, but the temperature of kink III TkIII showed more complex variation. Under increasing magnetic field, TkI and TkII increase; however, TkIII decreases. Combining [Mg(T)] curves with Ueff(H) and X'g(T), more detailed properties of these three kinks would be shown as follows. Kink I is a long-range soft ferromagnetic transition which occurs at TkI 100 K under ambient pressure but is suppressed completely at 11.9 kbar. Kink II emerges at 8.7 kbar along with TkII 93 K which is also long-range soft ferromagnetic but canted in nature. Kink III, a canted antiferromagnetic transition, appears at TkIII 72.5 K along with kink II also at 8.7 kbar. The proposed phase diagrams at ambient pressure, 9.4 and 11.9 kbar show the different magnetic features of BiMnO3. These findings are believed to result from the variations in crystal structure influenced by the external pressure. These results also indicate the common complicatedComment: 6 paages, 5 gifures, published in Physical Review B 80, 184426/200

    Antiferrodistortive phase transition in EuTiO3

    Full text link
    X-ray diffraction, dynamical mechanical analysis and infrared reflectivity studies revealed an antiferrodistortive phase transition in EuTiO3 ceramics. Near 300K the perovskite structure changes from cubic Pm-3m to tetragonal I4/mcm due to antiphase tilting of oxygen octahedra along the c axis (a0a0c- in Glazer notation). The phase transition is analogous to SrTiO3. However, some ceramics as well as single crystals of EuTiO3 show different infrared reflectivity spectra bringing evidence of a different crystal structure. In such samples electron diffraction revealed an incommensurate tetragonal structure with modulation wavevector q ~ 0.38 a*. Extra phonons in samples with modulated structure are activated in the IR spectra due to folding of the Brillouin zone. We propose that defects like Eu3+ and oxygen vacancies strongly influence the temperature of the phase transition to antiferrodistortive phase as well as the tendency to incommensurate modulation in EuTiO3.Comment: PRB, in pres

    Magnetic inhomogeneities in the quadruple perovskite manganite [Y_{2-x}Mn_{x}] Mn_{6}O_{12}

    Get PDF
    A combination of competing exchange interactions and substitutional disorder gives rise to magnetic inhomogeneities in the [Y_{2-x}Mn_{x}]Mn_{6}O-{12}x = 0.23 and 0.16 quadruple perovskite manganites. Our neutron powder scattering measurements show that both the x=0.23 and 0.16 samples separate into two distinct magnetic phases; below T_{1} = 120 ± 10 K the system undergoes a transition from a paramagnetic phase to a phase characterized by short-range antiferromagnetic clusters contained in a paramagnetic matrix, and below T2≈65 K the system is composed of well-correlated long-range collinear ferrimagnetic order, punctuated by short-range antiferromagnetic clusters. A sharp increase in the antiferromagnetic phase fraction is observed below ≈33 K, concomitant with a decrease in the ferrimagnetic phase fraction. Our results demonstrate that the theoretically proposed antiferromagnetic phase is stabilized in the [Y_{2-x}Mn_{x}] Mn_{6}O_{12} manganites in the presence of dominant B-B exchange interactions, as predicted
    corecore