166 research outputs found

    Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future

    Get PDF
    We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1 sigma detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev-Zel'dovich (SZ) selected galaxy cluster sample from the 2500 deg(2) SPT-SZ survey and targeted optical and X-ray follow-up data. In the ACDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers sigma(8) (Omega(m)/0.3)(0.5) = 0.831 +/- 0.020. Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1 sigma CMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of state w by a factor of 1.3 to sigma(w) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be for sigma(8), where adding CMB-cluster lensing data to the cluster number counts reduces the expected uncertainty on sigma(8) by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4

    Tinnitus: Distinguishing between Subjectively Perceived Loudness and Tinnitus-Related Distress

    Get PDF
    OBJECTIVES: Overall success of current tinnitus therapies is low, which may be due to the heterogeneity of tinnitus patients. Therefore, subclassification of tinnitus patients is expected to improve therapeutic allocation, which, in turn, is hoped to improve therapeutic success for the individual patient. The present study aims to define factors that differentially influence subjectively perceived tinnitus loudness and tinnitus-related distress. METHODS: In a questionnaire-based cross-sectional survey, the data of 4705 individuals with tinnitus were analyzed. The self-report questionnaire contained items about subjective tinnitus loudness, type of onset, awareness and localization of the tinnitus, hearing impairment, chronic comorbidities, sleep quality, and psychometrically validated questionnaires addressing tinnitus-related distress, depressivity, anxiety, and somatic symptom severity. In a binary step-wise logistic regression model, we tested the predictive power of these variables on subjective tinnitus loudness and tinnitus-related distress. RESULTS: The present data contribute to the distinction between subjective tinnitus loudness and tinnitus-related distress. Whereas subjective loudness was associated with permanent awareness and binaural localization of the tinnitus, tinnitus-related distress was associated with depressivity, anxiety, and somatic symptom severity. CONCLUSIONS: Subjective tinnitus loudness and the potential presence of severe depressivity, anxiety, and somatic symptom severity should be assessed separately from tinnitus-related distress. If loud tinnitus is the major complaint together with mild or moderate tinnitus-related distress, therapies should focus on auditory perception. If levels of depressivity, anxiety or somatic symptom severity are severe, therapies and further diagnosis should focus on these symptoms at first

    Searching for Anisotropic Cosmic Birefringence with Polarization Data from SPTpol

    Get PDF
    We present a search for anisotropic cosmic birefringence in 500 deg2^2 of southern sky observed at 150 GHz with the SPTpol camera on the South Pole Telescope. We reconstruct a map of cosmic polarization rotation anisotropies using higher-order correlations between the observed cosmic microwave background (CMB) EE and BB fields. We then measure the angular power spectrum of this map, which is found to be consistent with zero. The non-detection is translated into an upper limit on the amplitude of the scale-invariant cosmic rotation power spectrum, L(L+1)CLαα/2π<0.10×104L(L+1)C_L^{\alpha\alpha}/2\pi < 0.10 \times 10^{-4} rad2^2 (0.033 deg2^2, 95% C.L.). This upper limit can be used to place constraints on the strength of primordial magnetic fields, B1Mpc<17nGB_{1 \rm Mpc} < 17 {\rm nG} (95% C.L.), and on the coupling constant of the Chern-Simons electromagnetic term gaγ<4.0×102/HIg_{a\gamma} < 4.0 \times 10^{-2}/H_I (95% C.L.), where HIH_I is the inflationary Hubble scale. For the first time, we also cross-correlate the CMB temperature fluctuations with the reconstructed rotation angle map, a signal expected to be non-vanishing in certain theoretical scenarios, and find no detectable signal. We perform a suite of systematics and consistency checks and find no evidence for contamination.Comment: 17 pages, 7 figures - new subsection on non-Gaussian foregrounds, conclusions unchanged - updated to match published version on PR

    A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Full text link
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a  ⁣1500deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5kms1Mpc1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1σ<1\,\sigma of each other. (abridged)Comment: 35 Pages, 17 Figures, 11 Table
    corecore