1,444 research outputs found
Entanglement dynamics of electron-electron scattering in low-dimensional semiconductor systems
We perform the quantitative evaluation of the entanglement dynamics in
scattering events between two insistinguishable electrons interacting via
Coulomb potential in 1D and 2D semiconductor nanostructures. We apply a
criterion based on the von Neumann entropy and the Schmidt decomposition of the
global state vector suitable for systems of identical particles. From the
timedependent numerical solution of the two-particle wavefunction of the
scattering carriers we compute their entanglement evolution for different spin
configurations: two electrons with the same spin, with different spin, singlet,
and triplet spin state. The procedure allows to evaluate the mechanisms that
govern entanglement creation and their connection with the characteristic
physical parameters and initial conditions of the system. The cases in which
the evolution of entanglement is similar to the one obtained for
distinguishable particles are discussed.Comment: 22 pages, 7 figures, submitted to Physical Review
Hydroxycarboxylic Acid Receptor 1 and Neuroprotection in a Mouse Model of Cerebral Ischemia-Reperfusion.
Lactate is an intriguing molecule with emerging physiological roles in the brain. It has beneficial effects in animal models of acute brain injuries and traumatic brain injury or subarachnoid hemorrhage patients. However, the mechanism by which lactate provides protection is unclear. While there is evidence of a metabolic effect of lactate providing energy to deprived neurons, it can also activate the hydroxycarboxylic acid receptor 1 (HCAR1), a Gi-coupled protein receptor that modulates neuronal firing rates. After cerebral hypoxia-ischemia, endogenously produced brain lactate is largely increased, and the exogenous administration of more lactate can decrease lesion size and ameliorate the neurological outcome. To test whether HCAR1 plays a role in lactate-induced neuroprotection, we injected the agonists 3-chloro-5-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid into mice subjected to 30-min middle cerebral artery occlusion. The in vivo administration of HCAR1 agonists at reperfusion did not appear to exert any relevant protective effect as seen with lactate administration. Our results suggest that the protective effects of lactate after hypoxia-ischemia come rather from the metabolic effects of lactate than its signaling through HCAR1
Spatio-temporal overview of neuroinflammation in an experimental mouse stroke model.
After ischemic stroke, in the lesion core as well as in the ischemic penumbra, evolution of tissue damage and repair is strongly affected by neuroinflammatory events that involve activation of local specialized glial cells, release of inflammatory mediators, recruiting of systemic cells and vascular remodelling. To take advantage of this intricate response in the quest to devise new protective therapeutic strategies we need a better understanding of the territorial and temporal interplay between stroke-triggered inflammatory and cell death-inducing processes in both parenchymal and vascular brain cells. Our goal is to describe structural rearrangements and functional modifications occurring in glial and vascular cells early after an acute ischemic stroke. Low and high scale mapping of the glial activation on brain sections of mice subjected to 30 minutes middle cerebral artery occlusion (MCAO) was correlated with that of the neuronal cell death, with markers for microvascular changes and with markers for pro-inflammatory (IL-1β) and reparative (TGFβ1) cytokines. Our results illustrate a time-course of the neuroinflammatory response starting at early time-points (1 h) and up to one week after MCAO injury in mice, with an accurate spatial distribution of the observed phenomena
Physical realizations of quantum operations
Quantum operations (QO) describe any state change allowed in quantum
mechanics, such as the evolution of an open system or the state change due to a
measurement. We address the problem of which unitary transformations and which
observables can be used to achieve a QO with generally different input and
output Hilbert spaces. We classify all unitary extensions of a QO, and give
explicit realizations in terms of free-evolution direct-sum dilations and
interacting tensor-product dilations. In terms of Hilbert space dimensionality
the free-evolution dilations minimize the physical resources needed to realize
the QO, and for this case we provide bounds for the dimension of the ancilla
space versus the rank of the QO. The interacting dilations, on the other hand,
correspond to the customary ancilla-system interaction realization, and for
these we derive a majorization relation which selects the allowed unitary
interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.
A 6-year update of the health policy and advocacy priorities of the Society of Behavioral Medicine
Government policy affects virtually every topic of interest to health behavior researchers, from research funding to reimbursement for clinical services to application of evidence to impact health outcomes. This paper provides a 6-year update on the expansion of Society of Behavioral Medicine's (SBM) public policy and advocacy agenda and proposed future directions. SBM's Health Policy Council is responsible for ensuring coordination of the policy-related activities of the Health Policy Committee (HPC), the Civic and Public Engagement Committee (CPEC), and the Scientific and Professional Liaison Council (SPLC). These committees and councils have written letters to Congress, signed onto advocacy letters with hundreds of organizations, and developed and disseminated 15 health policy briefs, the majority of which have been presented to legislative staffers on Capitol Hill. With the assistance of the SPLC, SBM has collaborated on policy efforts with like-minded organizations to increase the impact of the Society's policy work. Moving forward, SBM plans to continue to increase efforts to disseminate policy work more broadly and develop long-term relationships with Congressional staffers. SBM leadership realizes that to remain relevant, demonstrate impact, and advance the role of behavioral medicine, we must advance a policy agenda that reflects our mission of better health through behavior change
Information-Disturbance Tradeoff in Quantum State Discrimination
When discriminating between two pure quantum states, there exists a
quantitative tradeoff between the information retrieved by the measurement and
the disturbance caused on the unknown state. We derive the optimal tradeoff and
provide the corresponding quantum measurement. Such an optimal measurement
smoothly interpolates between the two limiting cases of maximal information
extraction and no measurement at all.Comment: 5 pages, 2 (low-quality) figures. Eq. (20) corrected. Final published
versio
Improving information/disturbance and estimation/distortion trade-offs with non universal protocols
We analyze in details a conditional measurement scheme based on linear
optical components, feed-forward loop and homodyne detection. The scheme may be
used to achieve two different tasks. On the one hand it allows the extraction
of information with minimum disturbance about a set of coherent states. On the
other hand, it represents a nondemolitive measurement scheme for the
annihilation operator, i.e. an indirect measurement of the Q-function. We
investigate the information/disturbance trade-off for state inference and
introduce the estimation/distortion trade-off to assess estimation of the
Q-function. For coherent states chosen from a Gaussian set we evaluate both
information/disturbance and estimation/distortion trade-offs and found that non
universal protocols may be optimized in order to achieve better performances
than universal ones. For Fock number states we prove that universal protocols
do not exist and evaluate the estimation/distortion trade-off for a thermal
distribution.Comment: 10 pages, 6 figures; published versio
Carrier-carrier entanglement and transport resonances in semiconductor quantum dots
We study theoretically the entanglement created in a scattering between an
electron, incoming from a source lead, and another electron bound in the ground
state of a quantum dot, connected to two leads. We analyze the role played by
the different kinds of resonances in the transmission spectra and by the number
of scattering channels, into the amount of quantum correlations between the two
identical carriers. It is shown that the entanglement between their energy
states is not sensitive to the presence of Breit-Wigner resonances, while it
presents a peculiar behavior in correspondence of Fano peaks: two close maxima
separated by a minimum, for a two-channel scattering, a single maximum for a
multi-channel scattering. Such a behavior is ascribed to the different
mechanisms characterizing the two types of resonances. Our results suggest that
the production and detection of entanglement in quantum dot structures may be
controlled by the manipulation of Fano resonances through external fields.Comment: 8 pages, 6 figures, RevTex4 two-column format, submitte
- …