We study theoretically the entanglement created in a scattering between an
electron, incoming from a source lead, and another electron bound in the ground
state of a quantum dot, connected to two leads. We analyze the role played by
the different kinds of resonances in the transmission spectra and by the number
of scattering channels, into the amount of quantum correlations between the two
identical carriers. It is shown that the entanglement between their energy
states is not sensitive to the presence of Breit-Wigner resonances, while it
presents a peculiar behavior in correspondence of Fano peaks: two close maxima
separated by a minimum, for a two-channel scattering, a single maximum for a
multi-channel scattering. Such a behavior is ascribed to the different
mechanisms characterizing the two types of resonances. Our results suggest that
the production and detection of entanglement in quantum dot structures may be
controlled by the manipulation of Fano resonances through external fields.Comment: 8 pages, 6 figures, RevTex4 two-column format, submitte