research

Carrier-carrier entanglement and transport resonances in semiconductor quantum dots

Abstract

We study theoretically the entanglement created in a scattering between an electron, incoming from a source lead, and another electron bound in the ground state of a quantum dot, connected to two leads. We analyze the role played by the different kinds of resonances in the transmission spectra and by the number of scattering channels, into the amount of quantum correlations between the two identical carriers. It is shown that the entanglement between their energy states is not sensitive to the presence of Breit-Wigner resonances, while it presents a peculiar behavior in correspondence of Fano peaks: two close maxima separated by a minimum, for a two-channel scattering, a single maximum for a multi-channel scattering. Such a behavior is ascribed to the different mechanisms characterizing the two types of resonances. Our results suggest that the production and detection of entanglement in quantum dot structures may be controlled by the manipulation of Fano resonances through external fields.Comment: 8 pages, 6 figures, RevTex4 two-column format, submitte

    Similar works