3,360 research outputs found
Level and source of supplemental selenium for beef steers
Selenium (Se) is deficient in many Arkansas soils; therefore, an experiment was conducted on steers to evaluate the effects of two supplemental Se sources on performance, blood metabolites, and immune function. Thirty Angus-crossbred steers were blocked by weight and assigned within block to one of 15 pens (two steers/pen). Pens were assigned randomly within blocks to one of three dietary treatments consisting of a corn-soybean meal supplement devoid of supplemental Se (negative control, NC) or corn-soybean meal supplements providing 1.7 mg supplemental Se/d as sodium selenite (inorganic Se, ISe) or as Se yeast (organic Se, OSe). Steers were offered fescue hay to allow for approximately 10% refusals, and 1.1 kg/d (as fed basis) of the appropriate grain supplement. Level and source of supplemental Se did not affect average daily gain for the 105-d trial. By d 42, steers fed both sources of supplemental Se had greater blood Se concentrations than those fed the NC. On d 63 and 84, blood Se concentrations differed among all dietary treatments (NC \u3c ISe \u3c OSe), and on d 105 steers fed both sources of supplemental Se had greater blood Se concentrations than NC. Antibody response to vaccination for bovine respiratory viruses, or in vitro lymphocyte blastogenesis did not differ among steers fed the different diets. Both sources of supplemental Se increased blood Se concentrations, the organic source more rapidly than the inorganic source; however, Se level and source had minimal effects on immune function of weaned beef steers
Chaotic wave functions and exponential convergence of low-lying energy eigenvalues
We suggest that low-lying eigenvalues of realistic quantum many-body
hamiltonians, given, as in the nuclear shell model, by large matrices, can be
calculated, instead of the full diagonalization, by the diagonalization of
small truncated matrices with the exponential extrapolation of the results. We
show numerical data confirming this conjecture. We argue that the exponential
convergence in an appropriate basis may be a generic feature of complicated
("chaotic") systems where the wave functions are localized in this basis.Comment: 4 figure
Observation of a continuous phase transition in a shape-memory alloy
Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and
pressure-dependent electrical transport measurements have been made on single
crystals of AuZn and Au_{0.52}Zn_{0.48} above and below their martensitic
transition temperatures (T_M=64K and 45K, respectively). In each composition,
elastic neutron scattering detects new commensurate Bragg peaks (modulation)
appearing at Q = (1.33,0.67,0) at temperatures corresponding to each sample's
T_M. Although the new Bragg peaks appear in a discontinuous manner in the
Au_{0.52}Zn_{0.48} sample, they appear in a continuous manner in AuZn.
Surprising us, the temperature dependence of the AuZn Bragg peak intensity and
the specific-heat jump near the transition temperature are in favorable accord
with a mean-field approximation. A Landau-theory-based fit to the pressure
dependence of the transition temperature suggests the presence of a critical
endpoint in the AuZn phase diagram located at T_M*=2.7K and p*=3.1GPa, with a
quantum saturation temperature \theta_s=48.3 +/- 3.7K.Comment: 6 figure
Magnetic properties of the frustrated AFM spinel ZnCr_2O_4 and the spin-glass Zn_{1-x}Cd_xCr_2O_4 (x=0.05,0.10)
The -dependence (2- 400 K) of the electron paramagnetic resonance (EPR),
magnetic susceptibility, , and specific heat, , of the
antiferromagnetic (AFM) spinel ZnCrO and the spin-glass
(SG) ZnCdCrO () is reported. These
systems behave as a strongly frustrated AFM and SG with K and -400 K K. At high-
the EPR intensity follows the and the -value is -independent.
The linewidth broadens as the temperature is lowered, suggesting the existence
of short range AFM correlations in the paramagnetic phase. For
ZnCrO the EPR intensity and decreases below 90 K and 50
K, respectively. These results are discussed in terms of nearest-neighbor
Cr (S %) spin-coupled pairs with an exchange coupling of 50 K. The appearance of small resonance modes for K,
the observation of a sharp drop in and a strong peak in
at K confirms, as previously reported, the existence of long range
AFM correlations in the low- phase. A comparison with recent neutron
diffraction experiments that found a near dispersionless excitation at 4.5 meV
for and a continuous gapless spectrum for ,
is also given.Comment: 17 pages, 8 figures, 1 Table. Submitted to Physical Review
Creation of ultracold molecules from a Fermi gas of atoms
Since the realization of Bose-Einstein condensates (BEC) in atomic gases an
experimental challenge has been the production of molecular gases in the
quantum regime. A promising approach is to create the molecular gas directly
from an ultracold atomic gas; for example, atoms in a BEC have been coupled to
electronic ground-state molecules through photoassociation as well as through a
magnetic-field Feshbach resonance. The availability of atomic Fermi gases
provides the exciting prospect of coupling fermionic atoms to bosonic
molecules, and thus altering the quantum statistics of the system. This
Fermi-Bose coupling is closely related to the pairing mechanism for a novel
fermionic superfluid proposed to occur near a Feshbach resonance. Here we
report the creation and quantitative characterization of exotic, ultracold
K molecules. Starting with a quantum degenerate Fermi gas of atoms
at T < 150 nanoKelvin we scan over a Feshbach resonance to adiabatically create
over a quarter million trapped molecules, which we can convert back to atoms by
reversing the scan. The small binding energy of the molecules is controlled by
detuning from the Feshbach resonance and can be varied over a wide range. We
directly detect these weakly bound molecules through rf photodissociation
spectra that probe the molecular wavefunction and yield binding energies that
are consistent with theory
Recommended from our members
Orthographic facilitation in oral vocabulary acquisition
An experiment investigated whether exposure to orthography facilitates oral vocabulary learning. A total of 58 typically developing children aged 8-9 years were taught 12 nonwords. Children were trained to associate novel phonological forms with pictures of novel objects. Pictures were used as referents to represent novel word meanings. For half of the nonwords children were additionally exposed to orthography, although they were not alerted to its presence, nor were they instructed to use it. After this training phase a nonword-picture matching posttest was used to assess learning of nonword meaning, and a spelling posttest was used to assess learning of nonword orthography. Children showed robust learning for novel spelling patterns after incidental exposure to orthography. Further, we observed stronger learning for nonword-referent pairings trained with orthography. The degree of orthographic facilitation observed in posttests was related to children's reading levels, with more advanced readers showing more benefit from the presence of orthography
Theoretical study of the absorption spectra of the lithium dimer
For the lithium dimer we calculate cross sections for absorption of radiation
from the vibrational-rotational levels of the ground X [singlet Sigma g +]
electronic state to the vibrational levels and continua of the excited A
[singlet Sigma u +] and B [singlet Pi u] electronic states. Theoretical and
experimental data are used to characterize the molecular properties taking
advantage of knowledge recently obtained from photoassociation spectroscopy and
ultra-cold atom collision studies. The quantum-mechanical calculations are
carried out for temperatures in the range from 1000 to 2000 K and are compared
with previous calculations and measurements.Comment: 20 pages, revtex, epsf, 6 fig
SuperB: a linear high-luminosity B Factory
This paper is based on the outcome of the activity that has taken place
during the recent workshop on "SuperB in Italy" held in Frascati on November
11-12, 2005. The workshop was opened by a theoretical introduction of Marco
Ciuchini and was structured in two working groups. One focused on the machine
and the other on the detector and experimental issues.
The present status on CP is mainly based on the results achieved by BaBar and
Belle. Estabilishment of the indirect CP violation in B sector in 2001 and of
the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e+e-
asymmetric B Factories operating at the center of mass energy corresponding to
the mass of the Y(4s). With the two B Factories taking data, the Unitarity
Triangle is now beginning to be overconstrained by improving the measurements
of the sides and now also of the angles alpha, and gamma. We are also in
presence of the very intriguing results about the measurements of sin(2 beta)
in the time dependent analysis of decay channels via penguin loops, where b -->
s sbar s and b --> s dbar d. Tau physics, in particular LFV search, as well as
charm and ISR physics are important parts of the scientific program of a SuperB
Factory. The physics case together with possible scenarios for the high
luminosity SuperB Factory based on the concepts of the Linear Collider and the
related experimental issues are discussed.Comment: 22 pages, 22 figures, INFN Roadmap Repor
- âŠ