794 research outputs found

    Epitope-imprinted polymers: design principles of synthetic binding partners for natural biomacromolecules

    Get PDF
    Molecular imprinting (MI) has been explored as an increasingly viable tool for molecular recognition in various fields. However, imprinting of biologically relevant molecules like proteins is severely hampered by several problems. Inspired by natural antibodies, the use of epitopes as imprinting templates has been explored to circumvent those limitations, offering lower costs and greater versatility. Here, we review the latest innovations in this technology, as well as different applications where MI polymers (MIPs) have been used to target biomolecules of interest. We discuss the several steps in MI, from the choice of epitope and functional monomers to the different production methods and possible applications. We also critically explore how MIP performance can be assessed by various parameters. Last, we present perspectives on future breakthroughs and advances, offering insights into how MI techniques can be expanded to new fields such as tissue engineering.This work was supported by Project NORTE-01-0145-FEDER-000021 supported by the Norte Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); by the European Union Framework Program for Research and Innovation HORIZON 2020, under the Twinning grant agreement no. 810850–Achilles, European Research Council grant agreement no. 772817; and by FCT/MCTES (Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia, e Ensino Superior) through PhD grant PD/BD/143039/2018 for S.P.B.T., financed through the Doctoral Program in Advanced Therapies for Health (PATH) (FSE/POCH/ PD/169/2013), project PTDC/NAN-MAT/30595/2017, and individual contract 2020.03410. CEECIND for R.M.A.D. N.A.P. acknowledges support from the Cockrell Family Chair Foundation; the Institute for Biomaterials, Drug Delivery, and Regenerative Medicine; and the UT-Portugal Collaborative Research Program

    Izrada i karakterizacija IPN alginatnih i želatinskih mikrogelova s tramadolom: Optimiranje pomoću metode odzivnih površina

    Get PDF
    Tramadol-loaded interpenetrating polymer network (IPN) alginate-gelatin (AG) microgels (MG) were prepared by the chemical cross-linking technique with glutaraldehyde as cross-linking agent and were optimized using response surfaces. A central composite design for 2 factors, at 3 levels each, was employed to evaluate the effect of critical formulation variables, namely the amount of gelatin (X1) and glutaraldehyde (X2) on geometric mean diameter, encapsulation efficiency, diffusion coefficient (D), amount of mucin adsorbed per unit mass (Qe) and 50 % drug release time (t50). Microgels with average particle size in the range of 44.31102.41 m were obtained. Drug encapsulation up to 86.5 % was achieved. MGs were characterized by FT-IR spectroscopy to assess formation of the IPN structure and differential scanning calorimetry (DSC) was performed to understand the nature of drug dispersion after encapsulation into IPN microgels. Both equilibrium and dynamic swelling studies were performed in pH 7.4 phosphate buffer. Diffusion coefficients and exponents for water transport were determined using an empirical equation. The mucoadhesive properties of MGs were evaluated in aqueous solution by measuring the mucin adsorbed on MGs. Adsorption isotherms were constructed and fitted with Freundlich and Langmuir equations. In vitro release studies indicated the dependence of drug release on the extent of crosslinking and amount of gelatin used in preparing IPNs. The release rates were fitted to power law equation and Higuchi’s model to compute the various drug transport parameters, n value ranged from 0.4055 to 0.5754, suggesting that release may vary from Fickian to quasi-Fickian depending upon variation in the formulation composition.Interpenetrirajući umreženi polimerni (IPN) alginatno-želatinski (AG) mikrogelovi (MG) tramadola pripravljeni su metodom umrežavanja koristeći glutaraldehid kao sredstvo za umrežavanje. Pripravci su optimirani pomoću odzivnih površina. Kompozitini dizajn s dva faktora na tri nivoa upotrijebljen je za procjenu kritičnih formulacijskih varijabli: praćen je utjecaj količine želatine (X1) i glutaraldehida (X2) na prosječnu veličinu čestica, sposobnost kapsuliranja, koeficijent difuzije (D), količinu adsorbiranog mucina po jedinici mase (Qe) i vrijeme potrebno za oslobađanje 50 % lijeka (t50). Dobiveni su mikrogelovi prosječne veličine čestica od 44,31 do 102,41 m, a maksimalno postignuto vezanje lijeka bilo je 86,5 %. Mikrogelovi su karakterizirani FT-IR spektroskopijom i diferencijalnom pretražnom kalorimetrijom (DSC). Ravnotežne i dinamičke studije bubrenja provedene su u fosfatnom puferu pH 7,4. Koeficijenti difuzije i eksponenti za transport vode određeni su pomoću empirijske jednadžbe. Mukoadhezivna svojstva MGs evaluirana su u vodenoj otopini mjerenjem adsorpcije mucina na mikrogelove. Konstruirane su adsorpcijske izoterme i uspoređene s Freudlichovim i Langmuirovim jednadžbama. Pokusi in vitro pokazuju da oslobađanje ljekovite tvari ovisi o stupnju umreženja i količini želatine upotrijebljene u pripravi IPN. Vrijednosti oslobađanja uvrštene su u jednadžbu zakona potencije i u Higuchijev model kako bi se izračunali razni parametri prijenosa lijeka; n vrijednosti bile su između 0,4055 i 0,5754, što ukazuje na to da oslobađanje varira od Fickovog do kvazi-Fickovog, ovisno o sastavu pripravka

    Razvoj i vrednovanje plutajućih tableta norfloksacina s produljenim zadržavanjem u želucu

    Get PDF
    Floating matrix tablets of norfloxacin were developed to prolong gastric residence time, leading to an increase in drug bioavailability. Tablets were prepared by the wet granulation technique, using polymers such as hydroxy propyl methylcellulose (HPMCK4M, HPMCK100M) and xanthan gum. Tablets were evaluated for their physical characteristics viz., hardness, thickness, friability, and mass variation, drug content and floating properties. Further, tablets were studied for in vitro drug release characteristics for 9 hours. The tablets exhibited controlled and prolonged drug release profiles while floating over the dissolution medium. Non-Fickian diffusion was confirmed as the drug release mechanism from these tablets, indicating that water diffusion and the polymer rearrangement played an essential role in drug release. The best formulation (F4) was selected based on in vitro characteristics and was used in vivo radiographic studies by incorporating BaSO4. These studies revealed that the tablets remained in the stomach for 180 ± 30 min in fasting human volunteers and indicated that gastric retention time was increased by the floating principle, which was considered desirable for absorption window drugs.Razvijene su plutajuće tablete norfloksacina koje se produljeno zadržavaju u želucu i time povećavaju bioraspoloživost. Tablete su pripravljene metodom vlažne granulacije, koristeći hidroksipropil metilcelulozu (HPMCK4M, HPMCK100M) i ksantan gumu. Tabletama su određena fizikalna svojstva (čvrstoća, debljina, lomljivost i varijacija mase) te sadržaj ljekovite tvari i plutajuća svojstva. Nadalje, praćeno je oslobađanje ljekovite tvari in vitro tijekom 9 h. Uočeno je da je oslobađanje kontrolirano i produljeno te da tablete plutaju u ispitivanom mediju. Mehanizam oslobađanja nije slijedio Fickov zakon, što ukazuje da difuzija vode i promjene u strukturi polimera imaju bitnu ulogu u oslobađanju ljekovite tvari. Najbolja formulacija (F4) in vitro uporabljena je s dodatkom barijevog sulfata za radiografska ispitivanja in vivo. Ispitivanja na volonterima koji su apstinirali od hrane pokazala su da primjena plutajućih tableta produljuje vrijeme zadržavanja u želucu na 180 ± 30 min

    Bioactive Hydrogel Substrates: Probing Leukocyte Receptor–Ligand Interactions in Parallel Plate Flow Chamber Studies

    Get PDF
    The binding of activated integrins on the surface of leukocytes facilitates the adhesion of leukocytes to vascular endothelium during inflammation. Interactions between selectins and their ligands mediate rolling, and are believed to play an important role in leukocyte adhesion, though the minimal recognition motif required for physiologic interactions is not known. We have developed a novel system using poly(ethylene glycol) (PEG) hydrogels modified with either integrin-binding peptide sequences or the selectin ligand sialyl Lewis X (SLe(X)) within a parallel plate flow chamber to examine the dynamics of leukocyte adhesion to specific ligands. The adhesive peptide sequences arginine–glycine–aspartic acid–serine (RGDS) and leucine–aspartic acid–valine (LDV) as well as sialyl Lewis X were bound to the surface of photopolymerized PEG diacrylate hydrogels. Leukocytes perfused over these gels in a parallel plate flow chamber at physiological shear rates demonstrate both rolling and firm adhesion, depending on the identity and concentration of ligand bound to the hydrogel substrate. This new system provides a unique polymer-based model for the study of interactions between leukocytes and endothelium as well as a platform to develop improved scaffolds for cardiovascular tissue engineering

    In-Vivo Biodistribution and Safety of 99mTc-LLP2A-HYNIC in Canine Non-Hodgkin Lymphoma

    Get PDF
    Theranostic agents are critical for improving the diagnosis and treatment of non-Hodgkin Lymphoma (NHL). The peptidomimetic LLP2A is a novel peptide receptor radiotherapy candidate for treating NHL that expresses the activated α4β1 integrin. Tumor-bearing dogs are an excellent model of human NHL with similar clinical characteristics, behavior, and compressed clinical course. Canine in vivo imaging studies will provide valuable biodistribution and affinity information that reflects a diverse clinical population of lymphoma. This may also help to determine potential dose-limiting radiotoxicity to organs in human clinical trials. To validate this construct in a naturally occurring model of NHL, we performed in-vivo molecular targeted imaging and biodistribution in 3 normal dogs and 5 NHL bearing dogs. 99mTc-LLP2A-HYNIC-PEG and 99mTc-LLP2A-HYNIC were successfully synthesized and had very good labeling efficiency and radiochemical purity. 99mTc-LLP2A-HYNIC and 99mTc-LLP2A-HYNIC-PEG had biodistribution in keeping with their molecular size, with 99mTc-LLP2A-HYNIC-PEG remaining longer in the circulation, having higher tissue uptake, and having more activity in the liver compared to 99mTc-LLP2A-HYNIC. 99mTc-LLP2A-HYNIC was mainly eliminated through the kidneys with some residual activity. Radioactivity was reduced to near-background levels at 6 hours after injection. In NHL dogs, tumor showed moderately increased activity over background, with tumor activity in B-cell lymphoma dogs decreasing after chemotherapy. This compound is promising in the development of targeted drug-delivery radiopharmaceuticals and may contribute to translational work in people affected by non-Hodgkin lymphoma

    Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy

    Full text link
    [EN] A poly(vinylpyrrolidone-co-butyl acrylate) (60VP-40BA) membrane is synthesized as a tractable and hydrophilic material, obtaining a water-swelling percentage around 60%. An investigation of molecular mobility by means of differential scanning calorimetry, dynamic mechanical analysis and broadband dielectric relaxation spectroscopy (DRS) is fulfilled in the dry membrane. Dielectric and viscoelastic relaxation measurements are carried out on the 60VP-40BA sample at several frequencies between -150 and 150 degrees C. The dielectric spectrum shows several relaxation processes labelled gamma, beta and alpha in increasing order of temperature, whereas in the mechanical spectrum only the beta and alpha relaxation processes are completely defined. In the dielectric measurements, conductive contributions overlap the alpha-relaxation. The apparent activation energies have similar values for the beta-relaxation in both, the mechanical and the dielectric measurements. The beta process is a Johari-Golstein secondary relaxation and it is related to the local motions of the pyrrolidone group accompanied by the motion of the segments of the polymer backbone. The gamma process is connected with the butyl unit's motions, both located in the side chains of the polymer.BRF, MC, PO and MJS are grateful to CICYT for grant MAT2012-33483. FG and JMG thank the Spanish Ministerio de Economia y Competitividad-FEDER (MAT2011-22544) and the Consejeria de Educacion-Junta de Castilla y Leon (BU001A10-2).Redondo Foj, MB.; Carsí Rosique, M.; Ortiz Serna, MP.; Sanchis Sánchez, MJ.; García, FC.; García. José Miguel (2013). Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 46(29):295304-1-295304-12. https://doi.org/10.1088/0022-3727/46/29/295304S295304-1295304-12462

    Synergistic and competitive aspects of the adsorption of Poly(ethylene glycol) and Poly(vinyl alcohol) onto Na-Bentonite

    Get PDF
    Graph Presented) The competitive adsorption of poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVOH) onto Na-bentonite has been assessed quantitatively. Particular emphasis was focused on the amount of organic located within the bentonite interlayer and any subsequent eff ects on the extent of layer expansion. The individual isotherms showed strong adsorption for both PVOH and PEG at amounts lower than the quantities required to produce a fully loaded bilayer (0.33 g of PVOH/g of clay) and single layered structures (0.10 g of PEG/g of clay), respectively. Above these concentrations, the incremental amounts adsorbed were smaller, and the concentration of adsorbates in solution gradually increased. Na-bentonite adsorbed more PVOH than PEG at any given concentration. In the competitive study, the amount of PVOH adsorbed was enhanced in the presence of PEG (0.10 and 0.30 g/g of clay), but less PEG was adsorbed. At low loadings of PVOH (0.02-0.10 g/g of clay), the amount of adsorbed PEG was increased but at higher PVOH levels PEG adsorption was reduced. The XRD data showed stepped changes in the d-spacing as the adsorbed amounts of both PEG and PVOH increased. The PEG-bentonite samples did not expand beyond a bilayer structure (18 A˚), but the XRD data for PVOH-treated samples indicated the formation of multilayer structures (d ≥ 44 A˚)

    Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy

    Get PDF
    We have studied the diffusion of small solvent molecules (octane) and larger hydrophobic dye probes in octane-swollen poly(dimethyl siloxane) linear-chain solutions and end-linked model networks, using pulsed-gradient nuclear magnetic resonance (NMR) and fluorescence correlation spectroscopy (FCS), respectively, focusing on diffusion in the bulk polymer up to the equilibrium degree of swelling of the networks, that is, 4.8 at most. The combination of these results allows for new conclusions on the feasibility of different theories describing probe diffusion in concentrated polymer systems. While octane diffusion shows no cross-link dependence, the larger dyes are increasingly restricted by fixed chemical meshes. The simple Fujita free-volume theory proved most feasible to describe probe diffusion in linear long-chain solutions with realistic parameters, while better fits were obtained assuming a stretched exponential dependence on concentration. Importantly, we have analyzed the cross-link specific effect on probe diffusion independently of any specific model by comparing the best-fit interpolation of the solution data with the diffusion in the networks. The most reasonable description is obtained by assuming that the cross-link effect is additive in the effective friction coefficient of the probes. The concentration dependences as well as the data compared at the equilibrium degrees of swelling indicate that swelling heterogeneities and diffusant shape have a substantial influence on small-molecule diffusion in networks.

    Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    Get PDF
    Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate-co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly-N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury
    corecore