272 research outputs found
Bilateral synchronous occurrence of three different histological types of renal tumor: a case report
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Influence of boric anhydride upon the physical and chemical properties of ferrosilicon slag
The authors study the influence of boric anhydride upon the physical and chemical properties of slag in the manufacture of ferrosilicon. It is established that adding boric anhydride to the slag changes its refractory quality and its viscosity and eases pouring slag and metal. Slags with optimal composition and properties are described
Terahertz superlattice parametric oscillator
We report a GaAs/AlAs superlattice parametric oscillator. It was pumped by a
microwave field (power few mW) and produced 3rd harmonic radiation (frequency
near 300 GHz). The nonlinearity of the active superlattice was due to Bragg
reflections of conduction electrons at the superlattice planes. A theory of the
nonlinearity indicates that parametric oscillation should be possible up to
frequencies above 10 THz. The active superlattice may be the object of further
studies of predicted extraordinary nonlinearities for THz fields.Comment: 10 pages, 4 figure
Brownian motion exhibiting absolute negative mobility
We consider a single Brownian particle in a spatially symmetric, periodic
system far from thermal equilibrium. This setup can be readily realized
experimentally. Upon application of an external static force F, the average
particle velocity is negative for F>0 and positive for F<0 (absolute negative
mobility).Comment: 4 pages, 3 figures, to be published in PR
Nonequilibrium phenomena in high Landau levels
Developments in the physics of 2D electron systems during the last decade
have revealed a new class of nonequilibrium phenomena in the presence of a
moderately strong magnetic field. The hallmark of these phenomena is
magnetoresistance oscillations generated by the external forces that drive the
electron system out of equilibrium. The rich set of dramatic phenomena of this
kind, discovered in high mobility semiconductor nanostructures, includes, in
particular, microwave radiation-induced resistance oscillations and
zero-resistance states, as well as Hall field-induced resistance oscillations
and associated zero-differential resistance states. We review the experimental
manifestations of these phenomena and the unified theoretical framework for
describing them in terms of a quantum kinetic equation. The survey contains
also a thorough discussion of the magnetotransport properties of 2D electrons
in the linear response regime, as well as an outlook on future directions,
including related nonequilibrium phenomena in other 2D electron systems.Comment: 60 pages, 41 figure
Bloch gain in dc-ac-driven semiconductor superlattices in the absence of electric domains
We study theoretically the feasibility of amplification and generation of
terahertz radiation in dc-ac-driven semiconductor superlattices in the absence
of electric domains. We find that if in addition to dc bias a strong THz pump
field is applied, Bloch gain profile for a small THz signal can be achieved
under conditions of positive static differential conductivity. Here the
positive differential conductivity arises, similarly to the case of
large-signal amplification scheme [H. Kroemer, cond-mat/0009311)], due to
modifications of dc current density caused by the application of high-frequency
ac field [K. Unterrainer \textit{et al.}, Phys. Rev. Lett. \textbf{76}, 2973
(1996)]. Whereas the sign of absorption at low and zero frequencies is
sensitive to the ac fields, the gain profile in the vicinity of gain maximum is
robust. We suggest to use this ac-induced effect in a starter for THz Bloch
oscillator. Our analysis demonstrates that the application of a short THz pulse
to a superlattice allows to suppress the undesirable formation of electric
domains and reach a sustained large-amplitude operation of the dc-biased Bloch
scillator.Comment: 13 pages, 12 figure
First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
Comparative Analysis of the Pathogen Structure in Patients with Community-Acquired and Nosocomial Pneumonia in Medical Organizations of the Rostov, Tyumen Regions and Khabarovsk Territory at the Current Stage of a New Coronavirus Infection Pandemic
The aim of the study was to conduct a comparative analysis of the spectrum and antibiotic resistance of secondary pneumonia pathogens isolated in the territories of the Rostov, Tyumen Regions and Khabarovsk Territory against the background of a new coronavirus infection pandemic.Materials and methods. We investigated sputum samples from coronavirus-positive and coronavirus-negative patients with community-acquired pneumonia from medical organizations using bacteriological method, PCR mass spectrometry.Results and discussion. The study of the etiological structure of secondary pneumonia agents isolated from patients in medical organizations of the Southern, Ural and Far Eastern Federal Districts has revealed that the dominant cultures in SARS‑CoV‑2 “+” and SARS‑CoV‑2 “–” patients were yeast and yeast-like fungi. It has been found that under diversity of isolated fungi, Candida albicans species prevailed. The bacterial microflora is represented by a variety of gram-positive and gram-negative bacteria, of which Staphylococcus aureus and Klebsiella pneumoniaе were most often present in sputum. It has also been established that even before hospitalization of patients, community-acquired pneumonia could be caused by microorganisms of the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniaе, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.), which are usually considered as polyantibiotic-resistant pathogens of nosocomial infections. Moreover, in coronavirus-positive patients with secondary community-acquired pneumonia, those pathogens were isolated 2–3 times more frequently than in coronavirus-negative ones. Assessment of sensitivity/resistance of isolated strains to antibacterial drugs has revealed a general trend: the majority of the strains, regardless of the type, were characterized by a narrow spectrum of sensitivity, having 3 or more markers of antibiotic resistance. This confirms the necessity and expediency of microbiological support of the patient during the entire infectious process. The most adequate drugs of choice, providing activity against 60–70 % of strains of the Enterobacteriaceae family, are amikacin and cefoperazone/sulbactam
- …