603 research outputs found
Biomarkers for the diagnosis and management of heart failure
Heart failure (HF) is a significant cause of morbidity and mortality worldwide. Circulating biomarkers reflecting pathophysiological pathways involved in HF development and progression may assist clinicians in early diagnosis and management of HF patients. Natriuretic peptides (NPs) are cardioprotective hormones released by cardiomyocytes in response to pressure or volume overload. The roles of B-type NP (BNP) and N-terminal pro-B-type NP (NT-proBNP) for diagnosis and risk stratification in HF have been extensively demonstrated, and these biomarkers are emerging tools for population screening and as guides to the start of treatment in subclinical HF. On the contrary, conflicting evidence exists on the role of NPs as a guide to HF therapy. Among the other biomarkers, high-sensitivity troponins and soluble suppression of tumorigenesis-2 are the most promising biomarkers for risk stratification, with independent value to NPs. Other biomarkers evaluated as predictors of adverse outcome are galectin-3, growth differentiation factor 15, mid-regional pro-adrenomedullin, and makers of renal dysfunction. Multi-marker scores and genomic, transcriptomic, proteomic, and metabolomic analyses could further refine HF management
Myocardial stress perfusion scintigraphy for outcome prediction in patients with severe left ventricular systolic dysfunction
Abstract: Coronary angiography has been recommended in all patients with suspected chronic coronary syndrome and left ventricular ejection fraction (LVEF) ≤35%. The role of ischemia testing, for example, through stress-rest myocardial perfusion scintigraphy (MPS), for risk prediction is not well established. Methods: We evaluated 1576 consecutive patients referred to MPS and stratified into 3 LV ejection fraction (LVEF) categories: ≤35%, 36–49%, and ≥ 50%. Results: Patients with LVEF ≤35% were oldest, most often men, and with the highest likelihood of prior early (elective or urgent) coronary revascularization. They had also the highest values or summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS), as well as the highest frequency of significant coronary artery disease, and a greater number of diseased vessels. Follow-up: In this subgroup, 32 cardiovascular death or non-fatal myocardial infarction (MI) (21%), 35 all-cause deaths (22%), and 37 cardiovascular deaths, non-fatal MI, or late revascularizations (27%) were recorded with the shortest survival among all LVEF classes. SRS, SSS, and SDS had very low area under the curve values for the prediction of the 3 endpoints, with very high cut-offs, respectively. SRS and SSS cut-offs predicted a worse outcome in Cox regression models including the number of diseased vessels and early revascularization. Conclusions: In patients with LVEF ≤35%, SRS and SSS are less predictive of outcome than in patients with better preserved systolic dysfunction, but their cut-offs retain independent prognostic significance from the number of vessels with significant stenoses and from early revascularization
Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis
Background: Identification of reliable outcome predictors in coronavirus disease 2019 (COVID-19) is of paramount importance for improving patient's management. Methods: A systematic review of literature was conducted until 24 April 2020. From 6843 articles, 49 studies were selected for a pooled assessment; cumulative statistics for age and sex were retrieved in 587 790 and 602 234 cases. Two endpoints were defined: (a) a composite outcome including death, severe presentation, hospitalization in the intensive care unit (ICU) and/or mechanical ventilation; and (b) in-hospital mortality. We extracted numeric data on patients’ characteristics and cases with adverse outcomes and employed inverse variance random-effects models to derive pooled estimates. Results: We identified 18 and 12 factors associated with the composite endpoint and death, respectively. Among those, a history of CVD (odds ratio (OR) = 3.15, 95% confidence intervals (CIs) 2.26-4.41), acute cardiac (OR = 10.58, 5.00-22.40) or kidney (OR = 5.13, 1.78-14.83) injury, increased procalcitonin (OR = 4.8, 2.034-11.31) or D-dimer (OR = 3.7, 1.74-7.89), and thrombocytopenia (OR = 6.23, 1.031-37.67) conveyed the highest odds for the adverse composite endpoint. Advanced age, male sex, cardiovascular comorbidities, acute cardiac or kidney injury, lymphocytopenia and D-dimer conferred an increased risk of in-hospital death. With respect to the treatment of the acute phase, therapy with steroids was associated with the adverse composite endpoint (OR = 3.61, 95% CI 1.934-6.73), but not with mortality. Conclusions: Advanced age, comorbidities, abnormal inflammatory and organ injury circulating biomarkers captured patients with an adverse clinical outcome. Clinical history and laboratory profile may then help identify patients with a higher risk of in-hospital mortality
Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets
Chemotherapy with anthracycline-based regimens remains a cornerstone of treatment of many solid and blood tumors but is associated with a significant risk of cardiotoxicity, which can manifest as asymptomatic left ventricular dysfunction or overt heart failure. These effects are typically dose-dependent and cumulative and may require appropriate screening strategies and cardioprotective therapies in order to minimize changes to anticancer regimens or even their discontinuation. Our current understanding of cardiac damage by anthracyclines includes a central role of oxidative stress and inflammation. The identification of these processes through circulating biomarkers or imaging techniques might then be helpful for early diagnosis and risk stratification. Furthermore, therapeutic strategies relieving oxidative stress and inflammation hold promise to prevent heart failure development or at least to mitigate cardiac damage, although further evidence is needed on their efficacy, either alone or as part of combination therapies with neurohormonal antagonists, which are the current adopted standard
The SwissLipids knowledgebase for lipid biology.
MOTIVATION: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it.
RESULTS: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology-SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge.
AVAILABILITY: SwissLipids is freely available at http://www.swisslipids.org/.
CONTACT: [email protected]
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
Updates in Rhea-a manually curated resource of biochemical reactions.
Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive and non-redundant resource of expert-curated biochemical reactions described using species from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Rhea has been designed for the functional annotation of enzymes and the description of genome-scale metabolic networks, providing stoichiometrically balanced enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list and additional reactions), transport reactions and spontaneously occurring reactions. Rhea reactions are extensively curated with links to source literature and are mapped to other publicly available enzyme and pathway databases such as Reactome, BioCyc, KEGG and UniPathway, through manual curation and computational methods. Here we describe developments in Rhea since our last report in the 2012 database issue of Nucleic Acids Research. These include significant growth in the number of Rhea reactions and the inclusion of reactions involving complex macromolecules such as proteins, nucleic acids and other polymers that lie outside the scope of ChEBI. Together these developments will significantly increase the utility of Rhea as a tool for the description, analysis and reconciliation of genome-scale metabolic models
Updates in Rhea - an expert curated resource of biochemical reactions.
Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of expert-curated biochemical reactions designed for the functional annotation of enzymes and the description of metabolic networks. Rhea describes enzyme-catalyzed reactions covering the IUBMB Enzyme Nomenclature list as well as additional reactions, including spontaneously occurring reactions, using entities from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Here we describe developments in Rhea since our last report in the database issue of Nucleic Acids Research. These include the first implementation of a simple hierarchical classification of reactions, improved coverage of the IUBMB Enzyme Nomenclature list and additional reactions through continuing expert curation, and the development of a new website to serve this improved dataset
Cardiac magnetic resonance in patients with ARVC and family members: the potential role of native T1 mapping
Left ventricular (LV) involvement in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) is not evaluated in the revised Task Force Criteria, possibly leading to underdiagnosis. This study explored the diagnostic role of myocardial native T1 mapping in patients with ARVC and their first-degree relatives. Thirty ARVC patients (47% males, mean age 45 ± 27 years) and 59 first-degree relatives not meeting diagnostic criteria underwent CMR with native T1 mapping. C MR was abnormal in 26 (87%) patients with ARVC. The right ventricle was affected in isolation in 13 (43%) patients. Prior to T1 mapping assessment, 2 (7%) patients exhibited isolated LV involvement and 11 (36%) patients showed features of biventricular disease. Left ventricular involvement was manifest as detectable LV late gadolinium enhancement (LGE) in 12 out of 13 cases. According to pre-specified inter-ventricular septal (IVS) T1 mapping thresholds, 11 (37%) patients revealed raised native T1 values including 5 out of the 17 patients who would otherwise have been classified as exhibiting a normal LV by conventional imaging parameters. Native septal T1 values were elevated in 22 (37%) of the 59 first-degree relatives included. Biventricular involvement is commonly observed in ARVC; native myocardial T1 values are raised in more than one third of patients, including a significant proportion of cases that would have been otherwise classified as exhibiting a normal LV using conventional CMR techniques. The significance of abnormal T1 values in first-degree relatives at risk will need validation through longitudinal studies
Dynamic and thermodynamic properties of the generalised diamond chain model for azurite
The natural mineral azurite Cu3(CO3)2(OH)2 is an interesting spin-1/2 quantum
antiferromagnet. Recently, a generalised diamond chain model has been
established as a good description of the magnetic properties of azurite with
parameters placing it in a highly frustrated parameter regime. Here we explore
further properties of this model for azurite. First, we determine the inelastic
neutron scattering spectrum in the absence of a magnetic field and find good
agreement with experiments, thus lending further support to the model.
Furthermore, we present numerical data for the magnetocaloric effect and
predict that strong cooling should be observed during adiabatic
(de)magnetisation of azurite in magnetic fields slightly above 30T. Finally,
the presence of a dominant dimer interaction in azurite suggests the use of
effective Hamiltonians for an effective low-energy description and we propose
that such an approach may be useful to fully account for the three-dimensional
coupling geometry.Comment: 19 pages, 6 figures; to appear in: J. Phys.: Condens. Matter (special
issue on geometrically frustrated magnetism
On the Location of the Gamma-ray Emission in the 2008 Outburst in the BL Lacertae Object AO 0235+164 through Observations across the Electromagnetic Spectrum
We present observations of a major outburst at centimeter, millimeter,
optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO
0235+164. We analyze the timing of multi-waveband variations in the flux and
linear polarization, as well as changes in Very Long Baseline Array (VLBA)
images at 7mm with 0.15 milliarcsecond resolution. The association of the
events at different wavebands is confirmed at high statistical significance by
probability arguments and Monte-Carlo simulations. A series of sharp peaks in
optical linear polarization, as well as a pronounced maximum in the 7 mm
polarization of a superluminal jet knot, indicate rapid fluctuations in the
degree of ordering of the magnetic field. These results lead us to conclude
that the outburst occurred in the jet both in the quasi-stationary "core" and
in the superluminal knot, both parsecs downstream of the supermassive black
hole. We interpret the outburst as a consequence of the propagation of a
disturbance, elongated along the line of sight by light-travel time delays,
that passes through a standing recollimation shock in the core and propagates
down the jet to create the superluminal knot. The multi-wavelength light curves
vary together on long time-scales (months/years), but the correspondence is
poorer on shorter time-scales. This, as well as the variability of the
polarization and the dual location of the outburst, agrees with the
expectations of a multi-zone emission model in which turbulence plays a major
role in modulating the synchrotron and inverse Compton fluxes.Comment: Accepted for Publication in the Astrophysical Journal Letters. 7
pages (including 5 figures). Minor corrections with regard to previous
version, as proposed by the refere
- …