499 research outputs found

    Frenkel Excitons in Random Systems With Correlated Gaussian Disorder

    Get PDF
    Optical absorption spectra of Frenkel excitons in random one-dimensional systems are presented. Two models of inhomogeneous broadening, arising from a Gaussian distribution of on-site energies, are considered. In one case the on-site energies are uncorrelated variables whereas in the second model the on-site energies are pairwise correlated (dimers). We observe a red shift and a broadening of the absorption line on increasing the width of the Gaussian distribution. In the two cases we find that the shift is the same, within our numerical accuracy, whereas the broadening is larger when dimers are introduced. The increase of the width of the Gaussian distribution leads to larger differences between uncorrelated and correlated disordered models. We suggest that this higher broadening is due to stronger scattering effects from dimers.Comment: 9 pages, REVTeX 3.0, 3 ps figures. To appear in Physical Review

    FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS

    Get PDF
    We report theoretical electronic structure of Fibonacci superlattices of narrow-gap III-V semiconductors. Electron dynamics is accurately described within the envelope-function approximation in a two-band model. Quasiperiodicity is introduced by considering two different III-V semiconductor layers and arranging them according to the Fibonacci series along the growth direction. The resulting energy spectrum is then found by solving exactly the corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix techniques. We find that a self-similar electronic spectrum can be seen in the band structure. Electronic transport properties of samples are also studied and related to the degree of spatial localization of electronic envelope-functions via Landauer resistance and Lyapunov coefficient. As a working example, we consider type II InAs/GaSb superlattices and discuss in detail our results in this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in Semiconductor Science and Technolog

    Fluorescence decay in aperiodic Frenkel lattices

    Get PDF
    We study motion and capture of excitons in self-similar linear systems in which interstitial traps are arranged according to an aperiodic sequence, focusing our attention on Fibonacci and Thue-Morse systems as canonical examples. The decay of the fluorescence intensity following a broadband pulse excitation is evaluated by solving the microscopic equations of motion of the Frenkel exciton problem. We find that the average decay is exponential and depends only on the concentration of traps and the trapping rate. In addition, we observe small-amplitude oscillations coming from the coupling between the low-lying mode and a few high-lying modes through the topology of the lattice. These oscillations are characteristic of each particular arrangement of traps and they are directly related to the Fourier transform of the underlying lattice. Our predictions can be then used to determine experimentally the ordering of traps.Comment: REVTeX 3.0 + 3PostScript Figures + epsf.sty (uuencoded). To appear in Physical Review

    Experimental evidence of delocalized states in random dimer superlattices

    Get PDF
    We study the electronic properties of GaAs-AlGaAs superlattices with intentional correlated disorder by means of photoluminescence and vertical dc resistance. The results are compared to those obtained in ordered and uncorrelated disordered superlattices. We report the first experimental evidence that spatial correlations inhibit localization of states in disordered low-dimensional systems, as our previous theoretical calculations suggested, in contrast to the earlier belief that all eigenstates are localized.Comment: 4 pages, 5 figures. Physical Review Letters (in press

    Exciton Optical Absorption in Self-Similar Aperiodic Lattices

    Get PDF
    Exciton optical absorption in self-similar aperiodic one-dimensional systems is considered, focusing our attention on Thue-Morse and Fibonacci lattices as canonical examples. The absorption line shape is evaluated by solving the microscopic equations of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values, according to the Thue-Morse or Fibonacci sequences. Results are compared to those obtained in random lattices with the same stechiometry and size. We find that aperiodic order causes the occurrence of well-defined characteristic features in the absorption spectra which clearly differ from the case of random systems, indicating a most peculiar exciton dynamics. We successfully explain the obtained spectra in terms of the two-center problem. This allows us to establish the origin of all the absorption lines by considering the self-similar aperiodic lattices as composed of two-center blocks, within the same spirit of the renormalization group ideas.Comment: 16 pages in REVTeX 3.0. 2 figures on request to F. D-A ([email protected]

    Education to gain sustainability : analysis and approach from the experience obtained from two high school systems in mexican rural communities

    Full text link
    The decade &ldquo;Education for Sustainability&rdquo; is just emerging and one of its goals emphasized the importance of considering the curr&iacute;cula in a transdisciplinary and community based programs. This includes recognizing local and regional interests as relevant topics into the curr&iacute;cula. &ldquo;Education for sustainability&rdquo; does not appear to have a strong basis on their actions as its theoretical discourse does. The study we present here about content analysis in the curricula of two high schools systems in rural Mexican communities is an example. In this research we analyzed: 1) how the curricula is oriented towards forest management and the way is connected to the social reality of the communities; 2) how does the learning process develops in the classroom and its dynamics with teachers and students and 3) how does the environmental learning take place. Results revealed that more research is needed with adolescents in order to change the educational structure in rural Mexican high schools.<br /

    Three-dimensional effects on extended states in disordered models of polymers

    Get PDF
    We study electronic transport properties of disordered polymers in the presence of both uncorrelated and short-range correlated impurities. In our procedure, the actual physical potential acting upon the electrons is replaced by a set of nonlocal separable potentials, leading to a Schr\"odinger equation that is exactly solvable in the momentum representation. We then show that the reflection coefficient of a pair of impurities placed at neighboring sites (dimer defect) vanishes for a particular resonant energy. When there is a finite number of such defects randomly distributed over the whole lattice, we find that the transmission coefficient is almost unity for states close to the resonant energy, and that those states present a very large localization length. Multifractal analysis techniques applied to very long systems demonstrate that these states are truly extended in the thermodynamic limit. These results reinforce the possibility to verify experimentally theoretical predictions about absence of localization in quasi-one-dimensional disordered systems.Comment: 16 pages, REVTeX 3.0, 5 figures on request from FDA ([email protected]). Submitted to Phys. Rev. B. MA/UC3M/09/9

    Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states

    Full text link
    Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating
    • …
    corecore