11,773 research outputs found
Number of loops of size h in growing scale-free networks
The hierarchical structure of scale-free networks has been investigated
focusing on the scaling of the number of loops of size h as a function
of the system size. In particular we have found the analytic expression for the
scaling of in the Barab\'asi-Albert (BA) scale-free network. We have
performed numerical simulations on the scaling law for in the BA
network and in other growing scale free networks, such as the bosonic network
(BN) and the aging nodes (AN) network. We show that in the bosonic network and
in the aging node network the phase transitions in the topology of the network
are accompained by a change in the scaling of the number of loops with the
system size.Comment: 4 pages, 3 figure
Increasing the reliability of fully automated surveillance for central line–associated bloodstream infections
OBJECTIVETo increase reliability of the algorithm used in our fully automated electronic surveillance system by adding rules to better identify bloodstream infections secondary to other hospital-acquired infections.METHODSIntensive care unit (ICU) patients with positive blood cultures were reviewed. Central line–associated bloodstream infection (CLABSI) determinations were based on 2 sources: routine surveillance by infection preventionists, and fully automated surveillance. Discrepancies between the 2 sources were evaluated to determine root causes. Secondary infection sites were identified in most discrepant cases. New rules to identify secondary sites were added to the algorithm and applied to this ICU population and a non-ICU population. Sensitivity, specificity, predictive values, and kappa were calculated for the new models.RESULTSOf 643 positive ICU blood cultures reviewed, 68 (10.6%) were identified as central line–associated bloodstream infections by fully automated electronic surveillance, whereas 38 (5.9%) were confirmed by routine surveillance. New rules were tested to identify organisms as central line–associated bloodstream infections if they did not meet one, or a combination of, the following: (I) matching organisms (by genus and species) cultured from any other site; (II) any organisms cultured from sterile site; (III) any organisms cultured from skin/wound; (IV) any organisms cultured from respiratory tract. The best-fit model included new rules I and II when applied to positive blood cultures in an ICU population. However, they didn’t improve performance of the algorithm when applied to positive blood cultures in a non-ICU population.CONCLUSIONElectronic surveillance system algorithms may need adjustment for specific populations.Infect. Control Hosp. Epidemiol. 2015;36(12):1396–1400</jats:sec
A search for magnetic fields on central stars in planetary nebulae
One of the possible mechanisms responsible for the panoply of shapes in
planetary nebulae is the presence of magnetic fields that drive the ejection of
ionized material during the proto-planetary nebula phase. Therefore, detecting
magnetic fields in such objects is of key importance for understanding their
dynamics. Still, magnetic fields have not been detected using polarimetry in
the central stars of planetary nebulae. Circularly polarized light spectra have
been obtained with the Focal Reducer and Low Dispersion Spectrograph at the
Very Large Telescope of the European Southern Observatory and the Intermediate
dispersion Spectrograph and Imaging System at the William Herschel Telescope.
Nineteen planetary nebulae spanning very different morphology and evolutionary
stages have been selected. Most of central stars have been observed at
different rotation phases to point out evidence of magnetic variability. In
this paper, we present the result of two observational campaigns aimed to
detect and measure the magnetic field in the central stars of planetary nebulae
on the basis of low resolution spectropolarimetry. In the limit of the adopted
method, we can state that large scale fields of kG order are not hosted on the
central star of planetary nebulae.Comment: Paper accepted to be published in Astronomy and Astrophysics on
20/01/201
The Multi-center Evaluation of the Accuracy of the Contrast MEdium INduced Pd/Pa RaTiO in Predicting FFR (MEMENTO-FFR) Study.
AIMS:
Adenosine administration is needed for the achievement of maximal hyperaemia fractional flow reserve (FFR) assessment. The objective was to test the accuracy of Pd/Pa ratio registered during submaximal hyperaemia induced by non-ionic contrast medium (contrast FFR [cFFR]) in predicting FFR and comparing it to the performance of resting Pd/Pa in a collaborative registry of 926 patients enrolled in 10 hospitals from four European countries (Italy, Spain, France and Portugal).
METHODS AND RESULTS:
Resting Pd/Pa, cFFR and FFR were measured in 1,026 coronary stenoses functionally evaluated using commercially available pressure wires. cFFR was obtained after intracoronary injection of contrast medium, while FFR was measured after administration of adenosine. Resting Pd/Pa and cFFR were significantly higher than FFR (0.93±0.05 vs. 0.87±0.08 vs. 0.84±0.08, p<0.001). A strong correlation and a close agreement at Bland-Altman analysis between cFFR and FFR were observed (r=0.90, p<0.001 and 95% CI of disagreement: from -0.042 to 0.11). ROC curve analysis showed an excellent accuracy (89%) of the cFFR cut-off of ≤0.85 in predicting an FFR value ≤0.80 (AUC 0.95 [95% CI: 0.94-0.96]), significantly better than that observed using resting Pd/Pa (AUC: 0.90, 95% CI: 0.88-0.91; p<0.001). A cFFR/FFR hybrid approach showed a significantly lower number of lesions requiring adenosine than a resting Pd/Pa/FFR hybrid approach (22% vs. 44%, p<0.0001).
CONCLUSIONS:
cFFR is accurate in predicting the functional significance of coronary stenosis. This could allow limiting the use of adenosine to obtain FFR to a minority of stenoses with considerable savings of time and costs.info:eu-repo/semantics/publishedVersio
Mean-Field and Anomalous Behavior on a Small-World Network
We use scaling results to identify the crossover to mean-field behavior of
equilibrium statistical mechanics models on a variant of the small world
network. The results are generalizable to a wide-range of equilibrium systems.
Anomalous scaling is found in the width of the mean-field region, as well as in
the mean-field amplitudes. Finally, we consider non-equilibrium processes.Comment: 4 pages, 0 figures; reference adde
Ku & C Band solid state switch matrix for satellite payloads using LTCC multilayer substrate
This paper describes the design and development of Ku and C band solid state switch matrix for multimedia satellite payloads. The design, through the use of advanced packaging techniques, allows significant savings on mass and volume with respect to traditional electromechanical switches while guaranteeing a comparable reliability
Complexity transitions in global algorithms for sparse linear systems over finite fields
We study the computational complexity of a very basic problem, namely that of
finding solutions to a very large set of random linear equations in a finite
Galois Field modulo q. Using tools from statistical mechanics we are able to
identify phase transitions in the structure of the solution space and to
connect them to changes in performance of a global algorithm, namely Gaussian
elimination. Crossing phase boundaries produces a dramatic increase in memory
and CPU requirements necessary to the algorithms. In turn, this causes the
saturation of the upper bounds for the running time. We illustrate the results
on the specific problem of integer factorization, which is of central interest
for deciphering messages encrypted with the RSA cryptosystem.Comment: 23 pages, 8 figure
- …