30 research outputs found
Measurement of qutrits
We proposed the procedure of measuring the unknown state of the three-level
system - the qutrit, which was realized as the arbitrary polarization state of
the single-mode biphoton field. This procedure is accomplished for the set of
the pure states of qutrits; this set is defined by the properties of SU(2)
transformations, that are done by the polarization transformers.Comment: 9 pages, 9 figure
Shielding of a moving test charge in a quantum plasma
The linearized potential of a moving test charge in a one-component fully
degenerate fermion plasma is studied using the Lindhard dielectric function.
The motion is found to greatly enhance the Friedel oscillations behind the
charge, especially for velocities larger than a half of the Fermi velocity, in
which case the asymptotic behavior of their amplitude changes from 1/r^3 to
1/r^2.5. In the absence of the quantum recoil (tunneling) the potential reduces
to a form similar to that in a classical Maxwellian plasma, with a difference
being that the plasma oscillations behind the charge at velocities larger than
the Fermi velocity are not Landau-damped.Comment: 9 pages, 11 figures. v3: Fixed typo, updated abstrac
Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment
The relations among the components of the exit momenta of ultrarelativistic
electrons scattered on a strong electromagnetic wave of a low (optical)
frequency and linear polarization are established using the exact solutions to
the equations of motion with radiation reaction included (the Landau-Lifshitz
equation). It is found that the momentum components of the electrons traversed
the electromagnetic wave depend weakly on the initial values of the momenta.
These electrons are mostly scattered at the small angles to the direction of
propagation of the electromagnetic wave. The maximum Lorentz factor of the
electrons crossed the electromagnetic wave is proportional to the work done by
the electromagnetic field and is independent of the initial momenta. The
momentum component parallel to the electric field strength vector of the
electromagnetic wave is determined only by the diameter of the laser beam
measured in the units of the classical electron radius. As for the reflected
electrons, they for the most part lose the energy, but remain relativistic.
There is a reflection law for these electrons that relates the incident and the
reflection angles and is independent of any parameters.Comment: 12 pp, 3 fig
Stochastic Theory of Relativistic Particles Moving in a Quantum Field: II. Scalar Abraham-Lorentz-Dirac-Langevin Equation, Radiation Reaction and Vacuum Fluctuations
We apply the open systems concept and the influence functional formalism
introduced in Paper I to establish a stochastic theory of relativistic moving
spinless particles in a quantum scalar field. The stochastic regime resting
between the quantum and semi-classical captures the statistical mechanical
attributes of the full theory. Applying the particle-centric world-line
quantization formulation to the quantum field theory of scalar QED we derive a
time-dependent (scalar) Abraham-Lorentz-Dirac (ALD) equation and show that it
is the correct semiclassical limit for nonlinear particle-field systems without
the need of making the dipole or non-relativistic approximations. Progressing
to the stochastic regime, we derive multiparticle ALD-Langevin equations for
nonlinearly coupled particle-field systems. With these equations we show how to
address time-dependent dissipation/noise/renormalization in the semiclassical
and stochastic limits of QED. We clarify the the relation of radiation
reaction, quantum dissipation and vacuum fluctuations and the role that initial
conditions may play in producing non-Lorentz invariant noise. We emphasize the
fundamental role of decoherence in reaching the semiclassical limit, which also
suggests the correct way to think about the issues of runaway solutions and
preacceleration from the presence of third derivative terms in the ALD
equation. We show that the semiclassical self-consistent solutions obtained in
this way are ``paradox'' and pathology free both technically and conceptually.
This self-consistent treatment serves as a new platform for investigations into
problems related to relativistic moving charges.Comment: RevTex; 20 pages, 3 figures, Replaced version has corrected typos,
slightly modified derivation, improved discussion including new section with
comparisons to related work, and expanded reference
Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields
The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the 'light-sail' regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets