427 research outputs found

    Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Get PDF
    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied

    Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Get PDF
    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied

    Comparison of mechanical and tribotechnical properties of UHMWPE reinforced with basalt fibers and particles

    Get PDF
    Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed

    Controlling the Frequency-Temperature Sensitivity of a Cryogenic Sapphire Maser Frequency Standard by Manipulating Fe3+ Spins in the Sapphire Lattice

    Full text link
    To create a stable signal from a cryogenic sapphire maser frequency standard, the frequency-temperature dependence of the supporting Whispering Gallery mode must be annulled. We report the ability to control this dependence by manipulating the paramagnetic susceptibility of Fe3+ ions in the sapphire lattice. We show that the maser signal depends on other Whispering Gallery modes tuned to the pump signal near 31 GHz, and the annulment point can be controlled to exist between 5 to 10 K depending on the Fe3+ ion concentration and the frequency of the pump. This level of control has not been achieved previously, and will allow improvements in the stability of such devices.Comment: 17 pages, 10 figure

    Maser Oscillation in a Whispering-Gallery-Mode Microwave Resonator

    Full text link
    We report the first observation of above-threshold maser oscillation in a whispering-gallery(WG)-mode resonator, whose quasi-transverse-magnetic, 17th azimuthal-order WG mode, at a frequency of approx. 12.038 GHz, with a loaded Q of several hundred million, is supported on a cylinder of mono-crystalline sapphire. An electron spin resonance (ESR) associated with Fe3+ ions, that are substitutively included within the sapphire at a concentration of a few parts per billion, coincides in frequency with that of the (considerably narrower) WG mode. By applying a c.w. `pump' to the resonator at a frequency of approx. 31.34 GHz, with no applied d.c. magnetic field, the WG (`signal') mode is energized through a three-level maser scheme. Preliminary measurements demonstrate a frequency stability (Allan deviation) of a few times 1e-14 for sampling intervals up to 100 s.Comment: REVTeX v.4, 3 pages, with a separate .bbl file and 3 .eps figure

    Antiradical, Antimetastatic and Antitumor Activity of Kaolin Preparation “Kremnevit”

    Get PDF
    The objective of the research was to determine antiradical, antimetastatic and antitumor activity of kaolin preparation “Kremnevit”.Material and methods. Experiments were carried out on 30 male C57BL mice inoculated with Lewis lung carcinoma (LLC) cells. The rate of superoxide radical generation in tumor cells as well as in animal organs was determined using 1-hydroxy-2,2,6,6-tetramethyl-4-oxopyrrolidin- hydrochloride spin traps and electron spin resonance (ESR) spectroscopy at room temperature.Results of the experiments showed that the preparation “Kremnevit” exhibits antitumor activity reducing the tumor mass by 24% in experimental animals compared to animals which did not receive the preparation. “Kremnevit” affects the rate of superoxide radical generation by intracellular (mitochondria) and extracellular sources (the NADPH oxidase of tumor-associated neutrophils (TANs). The superoxide-generating activity of TANs increased in mice treated with “Kremnevit” compared to animals which did not receive it.Conclusions. Non-toxic kaolin preparation “Kremnevit” has antitumor and antimetastatic activity regulating electron transport in hepatocyte mitochondria during superoxide radical generation by hepatocyte mitochondria and immunocompetent blood cells of mice inoculated with LLC cells.

    Scale effects in tribological properties of solid-lubricating composites made of ultra-high molecular weight polyethylene filled with calcium stearate particles

    Get PDF
    Friction properties being influenced by scale effects are simulated in the paper by the example of polymer composite material made from Ultra High-Molecular Weight Polyethylenes (UHMWPE) filled by calcium stearate (C[36]H[70]CaO[4]). Of interest are the composites whose mechanical properties and tribotechnical characteristics do not depend monotonically on filler (inclusions) weight fraction. In order to describe the influence of scale effects onto frictional properties the model based on Reiss averaging (model of "weak phase") is employed. It is also suggested that when gradient elasticity theory is applicable the formal analogy between effective friction coefficient for surface heterogeneous structures and effective mechanical properties (compliances) for heterogeneous material can take place. Theoretical dependence to describe nonmonotonic change of effective friction coefficient versus filler concentration was obtained for the polymer composites under study. The suggested expressions might be useful for the sake of properties prognosis of antifriction polymeric materilas

    Creating traveling waves from standing waves from the gyrotropic paramagnetic properties of Fe3+^{3+} ions in a high-Q whispering gallery mode sapphire resonator

    Full text link
    We report observations of the gyrotropic change in magnetic susceptibility of the Fe3+^{3+} electron paramagnetic resonance at 12.037GHz (between spin states 1/2>|1/2> and 3/2>|3/2>) in sapphire with respect to applied magnetic field. Measurements were made by observing the response of the high-Q Whispering Gallery doublet (WGH±17,0,0_{\pm17,0,0}) in a Hemex sapphire resonator cooled to 5 K. The doublets initially existed as standing waves at zero field and were transformed to traveling waves due to the gyrotropic response.Comment: Accepted for publication in Phys. Rev.
    corecore