3,971 research outputs found

    Untangling the Recombination Line Emission from HII Regions with Multiple Velocity Components

    Get PDF
    HII regions are the ionized spheres surrounding high-mass stars. They are ideal targets for tracing Galactic structure because they are predominantly found in spiral arms and have high luminosities at infrared and radio wavelengths. In the Green Bank Telescope HII Region Discovery Survey (GBT HRDS) we found that >30% of first Galactic quadrant HII regions have multiple hydrogen radio recombination line (RRL) velocities, which makes determining their Galactic locations and physical properties impossible. Here we make additional GBT RRL observations to determine the discrete HII region velocity for all 117 multiple-velocity sources within 18deg. < l < 65deg. The multiple-velocity sources are concentrated in the zone 22deg. < l < 32deg., coinciding with the largest regions of massive star formation, which implies that the diffuse emission is caused by leaked ionizing photons. We combine our observations with analyses of the electron temperature, molecular gas, and carbon recombination lines to determine the source velocities for 103 discrete H II regions (88% of the sample). With the source velocities known, we resolve the kinematic distance ambiguity for 47 regions, and thus determine their heliocentric distances.Comment: 44 pages, 5 figures, 16 pages of tables; Accepted by ApJ

    Site amplification estimates in the Garigliano valley, central Italy, based on dense array measurements of ambient noise

    Get PDF
    A frequency-domain formulation of the Aki (1957, 1965) autocorrelation method has been applied to seismic noise recorded by a 100-m wide circular array deployed on soft Holocene sediments in the Garigliano river valley, where a large amplification of ground motion during earthquakes was experienced (Rovelli et al., 1988). The application of this method to ambient noise recordings demonstrates that microtremors in the valley are dispersive and dominated by surface waves. By assuming that the vertical component reflects Rayleigh wave motion, we obtain a dispersion curve that is interpreted in terms of a layered shear-wave velocity structure. Layer thicknesses are constrained by the stratigraphic information provided by a deep hole drilled in the area, and shear velocities are estimated by means of a trial-and-error approach to achieve a satisfactory fit of the ambient noise dispersion. The best-fit velocity model is used to compute a theoretical transfer function, which is then compared with an average spectral ratio obtained from earthquake weak ground motions recorded at two stations, one in the valley and the other on a limestone reference site. An overall agreement is found between the theoretical curve and the observed spectral ratios. The discrepancies that do exist may be ascribed to the assumption of 1-D inhomogeneity which considerably simplifies the theoretical transfer function. Our results show that the spatial-correlation method can be useful to infer velocity structure down to depths of hundreds of meters, when generalized geological informations are available, and can thus provide useful constraints for theoretical methodologies for the prediction of site response

    Eigenvalue variance bounds for Wigner and covariance random matrices

    Get PDF
    This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and recent localization results by Erd\"os, Yau and Yin. The case of real Wigner matrices is obtained from interlacing formulas. As an application, bounds on the expected 2-Wasserstein distance between the empirical spectral measure and the semicircle law are derived. Similar results are available for random covariance matrices

    Strategies for the discontinuation of humidified high flow nasal cannula (HHFNC) in preterm infants (Review)

    Get PDF
    BACKGROUND: Humidified high flow nasal cannula (HHFNC) delivers humidified gas at increased flow rates via binasal prongs and is becoming widely accepted as a method of non-invasive respiratory support for preterm infants. While indications for the use of (HHFNC) and its associated risks and benefits are being investigated, the best strategy for the discontinuation of HHFNC remains unknown. At what point an infant is considered stable enough to attempt to start withdrawing their HHFNC is not known. The criteria for a failed attempt at HHFNC discontinuation is also unclear

    Effect of heat treatment and aging on the mechanical loss and strength of hydroxide catalysis bonds between fused silica samples

    Get PDF
    Hydroxide catalysis bonds are used in the aLIGO gravitational wave detectors and are an essential technology within the mirror suspensions which allowed for detector sensitivities to be reached that enabled the first direct detections of gravitational waves. Methods aimed at further improving hydroxide catalysis bonds for future upgrades to these detectors, in order to increase detection rates and the number of detectable sources, are explored. Also, the effect on the bonds of an aLIGO suspension construction procedure involving heat, the fibre welding process, is investigated. Here we show that thermal treatments can be beneficial to improving some of the bond properties important to the mirror suspensions in interferometric gravitational wave detectors. It was found that heat treating bonds at 150\,^\circC increases bond strength by a factor of approximately 1.5 and a combination of bond ageing and heat treatment of the optics at 150\,\circC reduces the mechanical loss of a bond from 0.10 to 0.05. It is also shown that current construction procedures do not reduce bond strength

    Discovery of Five New Pulsars in Archival Data

    Get PDF
    Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922-52 has a period of 9.68 ms and a DM of 122.4 pc cm^-3. PSR J1147-66 has a period of 3.72 ms and a DM of 133.8 pc cm^-3. PSR J1227-6208 has a period of 34.53 ms, a DM of 362.6 pc cm^-3, is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein@Home volunteers. PSR J1546-59 has a period of 7.80 ms and a DM of 168.3 pc cm^-3. PSR J1725-3853 is an isolated 4.79-ms pulsar with a DM of 158.2 pc cm^-3. These pulsars were likely missed in earlier processing efforts due to their high DMs and short periods and the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.Comment: 12 pages, 2 figures, 2 tables, accepted to Ap

    The Kepler equation for inspiralling compact binaries

    Get PDF
    Compact binaries consisting of neutron stars / black holes on eccentric orbit undergo a perturbed Keplerian motion. The perturbations are either of relativistic origin or are related to the spin, mass quadrupole and magnetic dipole moments of the binary components. The post-Newtonian motion of such systems decouples into radial and angular parts. We present here for the first time the radial motion of such a binary encoded in a generalized Kepler equation, with the inclusion of all above-mentioned contributions, up to linear order in the perturbations. Together with suitably introduced parametrizations, the radial motion is solved completely

    A histidine residue and a tetranuclear cuprous‐thiolate cluster dominate the copper loading landscape of a copper storage protein from Streptomyces lividans

    Get PDF
    The chemical basis for protecting organisms against the toxic effect imposed by excess cuprous ions is to constrain this through high‐affinity binding sites that use cuprous‐thiolate coordination chemistry. In bacteria, a family of cysteine rich four‐helix bundle proteins utilise thiolate chemistry to bind up to 80 cuprous ions. These proteins have been termed copper storage proteins (Csp). The present study investigates cuprous ion loading to the Csp from Streptomyces lividans (SlCsp) using a combination of X‐ray crystallography, site‐directed mutagenesis and stopped‐flow reaction kinetics with either aquatic cuprous ions or a chelating donor. We illustrate that at low cuprous ion concentrations, copper is loaded exclusively into an outer core region of SlCsp via one end of the four‐helix bundle, facilitated by a set of three histidine residues. X‐ray crystallography reveals the existence of polynuclear cuprous‐thiolate clusters culminating in the assembly of a tetranuclear [Cu4(ÎŒ2‐S‐Cys)4(ΝΎ1‐His)] cluster in the outer core. As more cuprous ions are loaded, the cysteine lined inner core of SlCsp fills with cuprous ions but in a fluxional and dynamic manner with no evidence for the assembly of further intermediate polynuclear cuprous‐thiolate clusters as observed in the outer core. Using site‐directed mutagenesis a key role for His107 in the efficient loading of cuprous ions from a donor is established. A model of copper loading to SlCsp is proposed and discussed
    • 

    corecore