11,104 research outputs found

    A non-local, Lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories

    Get PDF
    We demonstrate how to construct a lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories. The covariant theory that we propose employs a multi-time formalism and a lorentz-invariant rule for the coordination of the space-time points on the individual particle trajectories. In this way we show that there is no contradiction between nonlocality and lorentz invariance in quantum mechanics. The approach is illustrated for relativistic bosons, using a simple model to discuss the individual non-locally correlated particle motion which ensues when the wavefunction is entangled. A simple example of measurement is described.Comment: 12 pages, 2 figure

    A relativistically covariant version of Bohm's quantum field theory for the scalar field

    Full text link
    We give a relativistically covariant, wave-functional formulation of Bohm's quantum field theory for the scalar field based on a general foliation of space-time by space-like hypersurfaces. The wave functional, which guides the evolution of the field, is space-time-foliation independent but the field itself is not. Hence, in order to have a theory in which the field may be considered a beable, some extra rule must be given to determine the foliation. We suggest one such rule based on the eigen vectors of the energy-momentum tensor of the field itself.Comment: 1 figure. Submitted to J Phys A. 20/05/04 replacement has additional references and a few minor changes made for clarity. Accepted by J Phys

    The cosmic ray spectrum above 10(17) eV

    Get PDF
    The final analysis of the data obtained by the Sydney University Giant Airshower Recorder (SUGAR) is presented. The data has been reanalysed to take into account the effects of afterpulsing in the photomultiplier tubes. Event data was used to produce a spectrum of equivalent vertical muon number and from this a model dependent primary energy spectrum was obtained. These spectra show good evidence for the Ankle: a flattening at 10(19) eV. There is no sign of the cut-off which would be expected from the effects of the universal black body radiation

    As-built design specification for P1A software system modified display subsystem

    Get PDF
    This document contains the design of the proportional estimate processor which was written to satisfy the software requirement of Part A of the P1A experiment. The purposes of the project are: (1) to select the dots to be labelled; (2) to create tables of green numbers and brightness values for all selected dots per acquisition; (3) to create scatter plots of green numbers vs brightness for each acquisition for all selected dots. If labels have been provided then scatter plots of only categories of interest can be optionally produced; and (4) to produce trajectory plots of green number vs brightness at differing acquisition times for each dot. These plots need to be in the same order as the list of selected dots. When labels are provided only plots of dots of categories of interest are to be produced

    Impact of Decoherence on Internal State Cooling using Optical Frequency Combs

    Full text link
    We discuss femtosecond Raman type techniques to control molecular vibrations, which can be implemented for internal state cooling from Feshbach states with the use of optical frequency combs with and without modulation. The technique makes use of multiple two-photon resonances induced by optical frequencies present in the comb. It provides us with a useful tool to study the details of molecular dynamics at ultracold temperatures. In our theoretical model we take into account decoherence in the form of spontaneous emission and collisional dephasing in order to ascertain an accurate model of the population transfer in the three-level system. We analyze the effects of odd and even chirps of the optical frequency comb in the form of sine and cosine functions on the population transfer. We compare the effects of these chirps to the results attained with the standard optical frequency comb to see if they increase the population transfer to the final deeply bound state in the presence of decoherence. We also analyze the inherent phase relation that takes place owing to collisional dephasing between molecules in each of the states. This ability to control the rovibrational states of a molecule with an optical frequency comb enables us to create a deeply bound ultracold polar molecules from the Feshbach state.Comment: 10 pages, 6 figure

    Field Measurement of Soil Surface Chemical Transport Properties for Comparison of Management Zones

    Get PDF
    Management of chemicals in soil is important, yet the complexity of field soils limits prediction of management effects on transport. To date, few methods have been available for field measurement of chemical transport properties, but a recently developed dripper–time domain reflectometry technique allows rapid collection of data for determining these properties. The objective of this work was to apply this technique for comparison of chemical transport properties for different soil management zones. Experiments were conducted comparing four interrow management zones: no-till nontrafficked, no-till trafficked, chisel plow nontrafficked, and chisel plow trafficked. Drip emitters were positioned at 12 locations in each zone and used to apply water followed by a step input of CaCl2 tracer solution. Breakthrough curves were measured via electrical conductivity with time domain reflectometry probes. The mobile–immobile model was fit to the breakthrough curves to determine chemical transport properties. Mean chemical transport properties were 0.34, 0.11 h−1, 10 cm h−1, 164 cm2 h−1, and 5 cm, for the immobile water fraction, mass exchange coefficient, average pore-water velocity, mobile dispersion coefficient, and dispersivity, respectively. All five properties showed significant differences between management zones. Differences in mass exchange and mobile dispersion coefficients coincided with differences in tillage, while differences in mean pore water velocities coincided with differences in traffic. The immobile water fraction was largest for the no-till nontrafficked zone. These results represent one of very few reports for field measurement of chemical transport properties and the first application of this approach for comparison of chemical transport properties across management zones

    Pareto optimality in house allocation problems

    Get PDF
    We study Pareto optimal matchings in the context of house allocation problems. We present an O(\sqrt{n}m) algorithm, based on Gales Top Trading Cycles Method, for finding a maximum cardinality Pareto optimal matching, where n is the number of agents and m is the total length of the preference lists. By contrast, we show that the problem of finding a minimum cardinality Pareto optimal matching is NP-hard, though approximable within a factor of 2. We then show that there exist Pareto optimal matchings of all sizes between a minimum and maximum cardinality Pareto optimal matching. Finally, we introduce the concept of a signature, which allows us to give a characterization, checkable in linear time, of instances that admit a unique Pareto optimal matching

    CXSFIT User Manual

    Get PDF
    • …
    corecore