7,998 research outputs found

    Types of Urea Supplement for Wintering Beef Calves

    Get PDF
    Previous research at the Cottonwood Station showed that calves fed low levels of urea during an adaptation period made faster gains than unadapted calves when fed higher levels of urea during the wintering period. Calves fed a corn-base urea supplement in pellet form gained faster than those fed a commercial, molasses-base urea supplement in liquid form. The following tow experiments were conducted as replications of those reported previously under this title

    Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    Full text link
    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets entitled Neutrino Geophysics Added final corrections for publicatio

    Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

    Full text link
    J.M. Herndon in 90-s proposed a natural nuclear fission georeactor at the center of the Earth with a power output of 3-10 TW as an energy source to sustain the Earth magnetic field. R.S. Raghavan in 2002 y. pointed out that under certain condition antineutrinos generated in georeactor can be detected using massive scintillation detectors. We consider the underground Baksan Neutrino Observatory (4800 m.w.e.) as a possible site for developments in Geoneutrino physics. Here the intrinsic background level of less than one event/year in a liquid scintillation ~1000 target ton detector can be achieved and the main source of background is the antineutrino flux from power reactors. We find that this flux is ~10 times lower than at KamLAND detector site and two times lower than at Gran Sasso laboratory and thus at Baksan the georeactor hypothesis can be conclusively tested. We also discuss possible search for composition of georector burning nuclear fuel by analysis of the antineutrino energy spectrum.Comment: 7 pages in LaTeX, 3 PS figures, Submitted to Physics of Atomic Nucle

    Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania

    Get PDF
    Metals in soils may positively or negatively affect plants as well as soil micro-organisms and mesofauna, depending on their abundance and bioavailability. Atmospheric deposition and biological uplift commonly result in metal enrichment in surface soils, but the relative importance of these processes is not always resolved. Here, we used an integrated approach to study the cycling of phosphorus and a suite of metals from the soil to the canopy (and back) in a temperate watershed. The behavior of elements in these surface soils fell into three categories. First, Al, Fe, V, Co, and Cr showed little to no enrichment in the top soil layers, and their concentrations were determined primarily by soil production fluxes with little influence of either atmospheric inputs or biological activity. Second, P, Cu, Zn and Cd were moderately enriched in surface soils due to a combination of atmospheric deposition and biological uplift. Among the metals we studied, Cu, Zn and Cd concentrations in surface soils were the most sensitive to changes in atmospheric deposition fluxes. Finally, Mo and Mn showed strong enrichment in the top soil layer that could not be explained strictly by either current atmospheric deposition or biological recycling processes, but may reflect both their unique chemistry and remnants of past anthropogenic fluxes. Mn has a long residence time in the soil partly due to intense biological uplift that retains Mn in the top soil layer. Mo, in spite of the high solubility of molybdate, remains in the soil because of strong binding to natural organic matter. This study demonstrates the need to consider simultaneously the vegetation and the soils to understand elemental distribution within soil profiles as well as cycling within watersheds

    Inverse beta decay reaction in 232^{232}Th and 233^{233}U fission antineutrino flux

    Full text link
    Energy spectra of antineutrinos coming from 232^{232}Th and 233^{233}U neutron-induced fission are calculated, relevant inverse beta decay νeˉ+pn+e+\bar{{\nu}_e}+p \to n + e^{+} positron spectra and total cross sections are found. This study is stimulated by a hypothesis that a self-sustained nuclear chain reaction is burning at the center of the Earth ("Georeactor"). The Georeactor, according to the author of this idea, provides energy necessary to sustain the Earth's magnetic field. The Georeactor's nuclear fuel is 235^{235}U and, probably, 232^{232}Th and 233^{233}U. Results of present study may appear to be useful in future experiments aimed to test the Georector hypothesis and to estimate its fuel components as a part of developments in geophysics and astrophysics based on observations of low energy antineutrinos in Nature.Comment: 6 pages in LaTeX and 2 ps figures. Submitted to Physics of Atomic Nucle

    A recombinant bovine herpesvirus-4 vectored vaccine delivered via intranasal nebulization elicits viral neutralizing antibody titers in cattle

    Get PDF
    Recombinant herpesvirus vaccine vectors offer distinct advantages in next-generation vaccine development, primarily due to the ability to establish persistent infections to provide sustainable antigen responses in the host. Recombinant bovine herpesvirus-4 (BoHV-4) has been previously shown to elicit protective immunity in model laboratory animal species against a variety of pathogens. For the first time, we describe the induction of antigen-specific immune responses to two delivered antigens in the host species after intranasal nebulization of recombinant BoHV-4 expressing the chimeric peptide containing the bovine viral diarrhea virus (BVDV) glycoprotein E2 and the bovine herpesvirus 1 (BoHV-1) glycoprotein D (BoHV-4-A-CMV-IgK-gE2gD-TM). In this study, four cattle were immunized via intranasal nebulization with the recombinant BoHV-4 construct. Two of the cattle were previously infected with wild-type BoHV-4, and both developed detectable serologic responses to BVDV and BoHV-1. All four immunized cattle developed detectable viral neutralizing antibody responses to BVDV, and one steer developed a transient viral neutralizing response to BoHV-1. Approximately one year after immunization, immunosuppressive doses of the glu-cocorticoid dexamethasone were administered intravenously to all four cattle. Within two weeks of immunosuppression, all animals developed viral neutralizing antibody responses to BoHV-1, and all animals maintained BVDV viral neutralizing capacity. Overall, nebulization of BoHV-4-A-CMV-IgK-gE2gD-TM persistently infects cattle, is capable of eliciting antigen-specific immunity following immunization, including in the presence of pre-existing BoHV-4 immunity, and recrudescence of the virus boosts the immune response to BoHV-4-vectored antigens. These results indicate that BoHV-4 is a viable and attractive vaccine delivery platform for use in cattle

    Clearing the hurdles for nanotechnology: In vivo inhalation effects

    Get PDF
    Nanoparticle Poster SessionINTRODUCTION: Nanoparticles of many types have been created for industrial and medical applications. Among these nanoparticles, single-walled carbon nanotubes (SWCNT) are of high interest for their physicochemical properties and application in electronics, drug delivery and other areas. With the rapid expansion in SWCNT-based new technologies, a full understanding of their safety and risks for human exposure must be considered. Because of the potential human risk of nanoparticle exposure we have developed an animal model to study the effects of nanoparticle exposure on lung tissue. Using this rat model we hypothesized that an acute nanoparticle exposure would result in an inflammatory response in lung tissue. METHODS: Particle instillation (intratracheal under direct visualization) of 50 μL pediatric surfactant containing 500 micrograms SWCNT (or surfactant alone) was performed in 32 rats to date. Pulmonary histology and biochemical measures on bronchoalveolar lavage (BAL), pleural fluid, serum and lung cells was quantified. RESULTS: Very early (<30 minutes) eosinophilia developed in lung tissue following SWCNT instillation. Innate immune system sterile response, or Damage Associated Molecular Patterns (DAMPs) protein was released. Our dose proved sterile, <0.03 EU LPS, showing the effect was damage-induced not pathogen-induced. High mobility group box protein-1 (HMGB1), a nuclear chaperone and prototype DAMP was elevated (ELISA) following SWCNT exposure. A second DAMP, heatshock protein 70 (HSP-70), a cytoplasmic chaperone, was also quantified by ELISA. The response OF HSP-70 over time is similar to HMGB1. Western blots performed on time-harvested lungs exposed to SWCNT demonstrated a receptor for advanced glycation end products (RAGE), with a strong peak at 3 hours after pulmonary exposure. The inflammatory cytokine TNFα appeared in lung tissue and bronchial alveolar lavage (BAL) at 30 minutes, with the same timing as the HMGB1 and HSP-70 release. Flow cytometry of type II pneumocytes and pulmonary macrophages from SWCNT-exposed rats demonstrated secondary DAMP receptors. A potential chronic effect was noted at one month. HMGB1 and HSP-70 peaked acutely at approximately 24 hr and then slowly decreased at 1 to 2 weeks. At 1 month, however, a new increase was seen. CONCLUSIONS: The hydrophobic SWCNT, important industrial components, form bundles and fibers in the hydrophilic lung, creating an immediate cellular inflammatory response, measurable cellular necrosis and very rapid chemokine release. Early data suggests the potential for chronicity
    corecore