1,148 research outputs found

    An Invitation to Higher Gauge Theory

    Get PDF
    In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge '2-group'. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincar\'e 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a 'tangent 2-group', which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an 'inner automorphism 2-group', which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an 'automorphism 2-group', which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a 'string 2-group'. We also touch upon higher structures such as the 'gravity 3-group' and the Lie 3-superalgebra that governs 11-dimensional supergravity.Comment: 60 pages, based on lectures at the 2nd School and Workshop on Quantum Gravity and Quantum Geometry at the 2009 Corfu Summer Institut

    Spin Foam Models of Yang-Mills Theory Coupled to Gravity

    Full text link
    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barret-Crane ansatz. In the Euclidian gravity case we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidian gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity.Comment: 10 page

    Positivity of Spin Foam Amplitudes

    Full text link
    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e^{iS}) rather than imaginary-time (e^{-S}) path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model.Comment: 15 pages LaTeX. v3: Final version, with updated conclusions and other minor changes. To appear in Classical and Quantum Gravity. v4: corrects # of samples in Lorentzian tabl

    Volume and Quantizations

    Get PDF
    The aim of this letter is to indicate the differences between the Rovelli-Smolin quantum volume operator and other quantum volume operators existing in the literature. The formulas for the operators are written in a unifying notation of the graph projective framework. It is clarified whose results apply to which operators and why.Comment: 8 page

    Asymptotics of 10j symbols

    Full text link
    The Riemannian 10j symbols are spin networks that assign an amplitude to each 4-simplex in the Barrett-Crane model of Riemannian quantum gravity. This amplitude is a function of the areas of the 10 faces of the 4-simplex, and Barrett and Williams have shown that one contribution to its asymptotics comes from the Regge action for all non-degenerate 4-simplices with the specified face areas. However, we show numerically that the dominant contribution comes from degenerate 4-simplices. As a consequence, one can compute the asymptotics of the Riemannian 10j symbols by evaluating a `degenerate spin network', where the rotation group SO(4) is replaced by the Euclidean group of isometries of R^3. We conjecture formulas for the asymptotics of a large class of Riemannian and Lorentzian spin networks in terms of these degenerate spin networks, and check these formulas in some special cases. Among other things, this conjecture implies that the Lorentzian 10j symbols are asymptotic to 1/16 times the Riemannian ones.Comment: 25 pages LaTeX with 8 encapsulated Postscript figures. v2 has various clarifications and better page breaks. v3 is the final version, to appear in Classical and Quantum Gravity, and has a few minor corrections and additional reference

    Quantum Theory of Gravity I: Area Operators

    Full text link
    A new functional calculus, developed recently for a fully non-perturbative treatment of quantum gravity, is used to begin a systematic construction of a quantum theory of geometry. Regulated operators corresponding to areas of 2-surfaces are introduced and shown to be self-adjoint on the underlying (kinematical) Hilbert space of states. It is shown that their spectra are {\it purely} discrete indicating that the underlying quantum geometry is far from what the continuum picture might suggest. Indeed, the fundamental excitations of quantum geometry are 1-dimensional, rather like polymers, and the 3-dimensional continuum geometry emerges only on coarse graining. The full Hilbert space admits an orthonormal decomposition into finite dimensional sub-spaces which can be interpreted as the spaces of states of spin systems. Using this property, the complete spectrum of the area operators is evaluated. The general framework constructed here will be used in a subsequent paper to discuss 3-dimensional geometric operators, e.g., the ones corresponding to volumes of regions.Comment: 33 pages, ReVTeX, Section 4 Revised: New results on the effect of topology of a surface on the eigenvalues and eigenfunctions of its area operator included. The proof of the bound on the level spacing of eigenvalues (for large areas) simplified and its ramification to the Bekenstein-Mukhanov analysis of black-hole evaporation made more explicit. To appear in CQ

    Self-referential Monte Carlo method for calculating the free energy of crystalline solids

    Get PDF
    A self-referential Monte Carlo method is described for calculating the free energy of crystalline solids. All Monte Carlo methods for the free energy of classical crystalline solids calculate the free-energy difference between a state whose free energy can be calculated relatively easily and the state of interest. Previously published methods employ either a simple model crystal, such as the Einstein crystal, or a fluid as the reference state. The self-referential method employs a radically different reference state; it is the crystalline solid of interest but with a different number of unit cells. So it calculates the free-energy difference between two crystals, differing only in their size. The aim of this work is to demonstrate this approach by application to some simple systems, namely, the face centered cubic hard sphere and Lennard-Jones crystals. However, it can potentially be applied to arbitrary crystals in both bulk and confined environments, and ultimately it could also be very efficient

    Positivity in Lorentzian Barrett-Crane Models of Quantum Gravity

    Full text link
    The Barrett-Crane models of Lorentzian quantum gravity are a family of spin foam models based on the Lorentz group. We show that for various choices of edge and face amplitudes, including the Perez-Rovelli normalization, the amplitude for every triangulated closed 4-manifold is a non-negative real number. Roughly speaking, this means that if one sums over triangulations, there is no interference between the different triangulations. We prove non-negativity by transforming the model into a ``dual variables'' formulation in which the amplitude for a given triangulation is expressed as an integral over three copies of hyperbolic space for each tetrahedron. Then we prove that, expressed in this way, the integrand is non-negative. In addition to implying that the amplitude is non-negative, the non-negativity of the integrand is highly significant from the point of view of numerical computations, as it allows statistical methods such as the Metropolis algorithm to be used for efficient computation of expectation values of observables.Comment: 13 page

    Cosmological Deformation of Lorentzian Spin Foam Models

    Full text link
    We study the quantum deformation of the Barrett-Crane Lorentzian spin foam model which is conjectured to be the discretization of Lorentzian Plebanski model with positive cosmological constant and includes therefore as a particular sector quantum gravity in de-Sitter space. This spin foam model is constructed using harmonic analysis on the quantum Lorentz group. The evaluation of simple spin networks are shown to be non commutative integrals over the quantum hyperboloid defined as a pile of fuzzy spheres. We show that the introduction of the cosmological constant removes all the infrared divergences: for any fixed triangulation, the integration over the area variables is finite for a large class of normalization of the amplitude of the edges and of the faces.Comment: 37 pages, 7 figures include
    corecore