1,676 research outputs found
Sensitivity of Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life stage dependent
The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examinedin the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280320 nm). Photophysiological indices (ETRmax, Ek, and a) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (a) and photosynthetic capacity (rETRmax) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB-induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR-exposed and PAR + UVRexposed propagules. Our data showed that U. penicilliformis from the Antarctic is ratherinsensitive to the applied UVR. This amphi-equatorial species possesses different protective mechanisms that can cope with high UVR in coldtemperatewaters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratosphericozone
Recommended from our members
Immune factors preceding diagnosis of glioma: a Prostate Lung Colorectal Ovarian Cancer Screening Trial nested case-control study.
BackgroundEpidemiological studies of adult glioma have identified genetic and environmental risk factors, but much remains unclear. The aim of the current study was to evaluate anthropometric, disease-related, and prediagnostic immune-related factors for relationship with glioma risk.MethodsWe conducted a nested case-control study among the intervention arm of the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial. One hundred and twenty-four glioma cases were identified and each matched to four controls. Baseline characteristics were collected at enrollment and were evaluated for association with glioma status. Serum specimens were collected at yearly intervals and were analyzed for immune-related factors including TGF-β1, TNF-α, total IgE, and allergen-specific IgE. Immune factors were evaluated at baseline in a multivariate conditional logistic regression model, along with one additional model that incorporated the latest available measurement.ResultsA family history of glioma among first-degree relatives was associated with increased glioma risk (OR = 4.41, P = .002). In multivariate modeling of immune factors at baseline, increased respiratory allergen-specific IgE was inversely associated with glioma risk (OR for allergen-specific IgE > 0.35 PAU/L: 0.59, P = .03). A logistic regression model that incorporated the latest available measurements found a similar association for allergen-specific IgE (P = .005) and showed that elevated TGF-β1 was associated with increased glioma risk (P-value for trend <.0001).ConclusionThe results from this prospective prediagnostic study suggest that several immune-related factors are associated with glioma risk. The association observed for TGF-β1 when sampling closer to the time of diagnosis may reflect the nascent brain tumor's feedback on immune function
Description of Atmospheric Conditions at the Pierre Auger Observatory Using Meteorological Measurements and Models
Atmospheric conditions at the site of a cosmic ray observatory must be known
well for reconstructing observed extensive air showers, especially when
measured using the fluorescence technique. For the Pierre Auger Observatory, a
sophisticated network of atmospheric monitoring devices has been conceived.
Part of this monitoring was a weather balloon program to measure atmospheric
state variables above the Observatory. To use the data in reconstructions of
air showers, monthly models have been constructed. Scheduled balloon launches
were abandoned and replaced with launches triggered by high-energetic air
showers as part of a rapid monitoring system. Currently, the balloon launch
program is halted and atmospheric data from numerical weather prediction models
are used. A description of the balloon measurements, the monthly models as well
as the data from the numerical weather prediction are presented
Atmospheric aerosols at the Pierre Auger Observatory and environmental implications
The Pierre Auger Observatory detects the highest energy cosmic rays.
Calorimetric measurements of extensive air showers induced by cosmic rays are
performed with a fluorescence detector. Thus, one of the main challenges is the
atmospheric monitoring, especially for aerosols in suspension in the
atmosphere. Several methods are described which have been developed to measure
the aerosol optical depth profile and aerosol phase function, using lasers and
other light sources as recorded by the fluorescence detector. The origin of
atmospheric aerosols traveling through the Auger site is also presented,
highlighting the effect of surrounding areas to atmospheric properties. In the
aim to extend the Pierre Auger Observatory to an atmospheric research platform,
a discussion about a collaborative project is presented.Comment: Regular Article, 16 pages, 12 figure
Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado
We describe an experiment, located in south-east Colorado, USA, that measured
aerosol optical depth profiles using two Lidar techniques. Two independent
detectors measured scattered light from a vertical UV laser beam. One detector,
located at the laser site, measured light via the inelastic Raman
backscattering process. This is a common method used in atmospheric science for
measuring aerosol optical depth profiles. The other detector, located
approximately 40km distant, viewed the laser beam from the side. This detector
featured a 3.5m2 mirror and measured elastically scattered light in a bistatic
Lidar configuration following the method used at the Pierre Auger cosmic ray
observatory. The goal of this experiment was to assess and improve methods to
measure atmospheric clarity, specifically aerosol optical depth profiles, for
cosmic ray UV fluorescence detectors that use the atmosphere as a giant
calorimeter. The experiment collected data from September 2010 to July 2011
under varying conditions of aerosol loading. We describe the instruments and
techniques and compare the aerosol optical depth profiles measured by the Raman
and bistatic Lidar detectors.Comment: 34 pages, 16 figure
The Central Laser Facility at the Pierre Auger Observatory
The Central Laser Facility is located near the middle of the Pierre Auger
Observatory in Argentina. It features a UV laser and optics that direct a beam
of calibrated pulsed light into the sky. Light scattered from this beam
produces tracks in the Auger optical detectors which normally record nitrogen
fluorescence tracks from cosmic ray air showers. The Central Laser Facility
provides a "test beam" to investigate properties of the atmosphere and the
fluorescence detectors. The laser can send light via optical fiber
simultaneously to the nearest surface detector tank for hybrid timing analyses.
We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
- …
