92 research outputs found

    Testing and Structured Design

    Get PDF
    This paper describes part of an integrated circuit testing project carried out at Caltech between 1979 and 1982. The central theme and result of the project is a language or notation for describing tests for complex integrated circuits. The evolution of this test language has been guided by many considerations, including (1) its implementation in a working, interactive test system called FIFI, (2) its fit to ideas about the architecture of high-performance test instruments, and (3) its expressivity for a design-for-testability strategy for chip designs structured in the general style presented by Mead and Conway [1]

    Leaf color and vine size are related to yield in a phylloxera-infested vineyard

    Get PDF
    The uneven spread of phylloxera infestation and associated vine symptoms in vineyards usually complicates yield estimates and vineyard replacement decisions. In a Cabernet Sauvignon vineyard with AXR#1 rootstock the current season's and following season's yields of 40 vine plots correlated (r ≥ 0.77, p ≤ 0.05) with early to midseason leaf and canopy spectra measured in the field, laboratory and remotely with aircraft-borne sensors

    Static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints

    Full text link
    It was shown by Ford and Roman in 1996 that quantum field theory severely constrains wormhole geometries on a macroscopic scale. The first part of this paper discusses a wide class of wormhole solutions that meet these constraints. The type of shape function used is essentially generic. The constraints are then discussed in conjunction with various redshift functions. Violations of the weak energy condition and traversability criteria are also considered. The second part of the paper analyzes analogous time-dependent (dynamic) wormholes with the aid of differential forms. It is shown that a violation of the weak energy condition is not likely to be avoidable even temporarily.Comment: 16 pages AMSTe

    Magnetic strings in anti-de Sitter General Relativity

    Get PDF
    We obtain spacetimes generated by static and spinning magnetic string sources in Einstein Relativity with negative cosmological constant. Since the spacetime is asymptotically a cylindrical anti-de Sitter spacetime, we will be able to calculate the mass, momentum, and electric charge of the solutions. We find two families of solutions, one with longitudinal magnetic field and the other with angular magnetic field. The source for the longitudinal magnetic field can be interpreted as composed by a system of two symmetric and superposed electrically charged lines with one of the electrically charged lines being at rest and the other spinning. The angular magnetic field solution can be similarly interpreted as composed by charged lines but now one is at rest and the other has a velocity along the axis. This solution cannot be extended down to the origin.Comment: Latex, 26 page

    Axially symmetric rotating traversable wormholes

    Full text link
    This paper generalizes the static and spherically symmetric traversable wormhole geometry to a rotating axially symmetric one with a time-dependent angular velocity by means of an exact solution. It was found that the violation of the weak energy condition, although unavoidable, is considerably less severe than in the static spherically symmetric case. The radial tidal constraint is more easily met due to the rotation. Similar improvements are seen in one of the lateral tidal constraints. The magnitude of the angular velocity may have little effect on the weak energy condition violation for an axially symmetric wormhole. For a spherically symmetric one, however, the violation becomes less severe with increasing angular velocity. The time rate of change of the angular velocity, on the other hand, was found to have no effect at all. Finally, the angular velocity must depend only on the radial coordinate, confirming an earlier result.Comment: 17 pages, AMSTe

    Gravastar energy conditions revisited

    Full text link
    We consider the gravastar model where the vacuum phase transition between the de Sitter interior and the Schwarzschild or Schwarzschild-de Sitter exterior geometries takes place at a single spherical delta-shell. We derive sharp analytic bounds on the surface compactness (2m/r) that follow from the requirement that the dominant energy condition (DEC) holds at the shell. In the case of Schwarzschild exterior, the highest surface compactness is achieved with the stiff shell in the limit of vanishing (dark) energy density in the interior. In the case of Schwarzschild-de Sitter exterior, in addition to the gravastar configurations with the shell under surface pressure, gravastar configurations with vanishing shell pressure (dust shells), as well as configurations with the shell under surface tension, are allowed by the DEC. Respective bounds on the surface compactness are derived for all cases. We also consider the speed of sound on the shell as derived from the requirement that the shell is stable against the radial perturbations. The causality requirement (sound speed not exceeding that of light) further restricts the space of allowed gravastar configurations.Comment: LaTeX/IOP-style, 16 pages, 2 figures, changes wrt v1: motivation for eq. (6) clarified, several referecnes added (to appear in Class. Quantum Grav.

    Microlensing by natural wormholes: theory and simulations

    Get PDF
    We provide an in depth study of the theoretical peculiarities that arise in effective negative mass lensing, both for the case of a point mass lens and source, and for extended source situations. We describe novel observational signatures arising in the case of a source lensed by a negative mass. We show that a negative mass lens produces total or partial eclipse of the source in the umbra region and also show that the usual Shapiro time delay is replaced with an equivalent time gain. We describe these features both theoretically, as well as through numerical simulations. We provide negative mass microlensing simulations for various intensity profiles and discuss the differences between them. The light curves for microlensing events are presented and contrasted with those due to lensing produced by normal matter. Presence or absence of these features in the observed microlensing events can shed light on the existence of natural wormholes in the Universe.Comment: 16 pages, 24 postscript figures (3 coloured), revtex style, submitted to Phys. Rev.

    Morris-Thorne wormholes with a cosmological constant

    Get PDF
    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are briefly reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure of the thin-shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one could expect, being negative (tension) for relatively high cosmological constant and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in-between. Finally, some specific solutions with generic cosmological constant, based on the Morris-Thorne solutions, are provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published in Physical Review

    Phase-space and Black Hole Entropy of Higher Genus Horizons in Loop Quantum Gravity

    Full text link
    In the context of loop quantum gravity, we construct the phase-space of isolated horizons with genus greater than 0. Within the loop quantum gravity framework, these horizons are described by genus g surfaces with N punctures and the dimension of the corresponding phase-space is calculated including the genus cycles as degrees of freedom. From this, the black hole entropy can be calculated by counting the microstates which correspond to a black hole of fixed area. We find that the leading term agrees with the A/4 law and that the sub-leading contribution is modified by the genus cycles.Comment: 22 pages, 9 figures. References updated. Minor changes to match version to appear in Class. Quant. Gra
    corecore