
TECHNICAL MEMORANDUM

Department of

Computer Science

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Caltech Authors - Main

https://core.ac.uk/display/216158035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Testing and Structured Design

Erik P. DeBenedictis

Charles L. Seitz

Computer Science, California Institute of Technology

2 August' 982

4778: TM :82

The research described in this paper was sponsored by the Defense Advanced Research

Projects Agency, ARPA Order number 3771, and monitored by the Office of Naval Research

under contract number NOaa' 4-79-C-0597.

To be published in the Proceedings of the International
Test Conference, Cherry Hill N.J., 1982

Copyright (C) 1982 Caltech. All Rights Reserved.

Caltech C.S. Deparment Document Number 4778.

Table of Contents
1. Definition of a Structured System
2. Actions Performed Upon Ports
3. Small Examples
4. Compositions
5. Example
6. Conclusions
7. References

List of Figures
Figure 1: A Structured Design
Figure 2: Filter Representation of a Test
Figure 3: System Consisting of Flip Flops and an Internal Part

1
2
3
5
7
9
9

1
5
7

1

Testing and Structured Design

This paper describes part of an integrated circuit testing project carried out at Caltech

between 1979 and 1982. The centra~ theme and result of the project is a language or

notation for describing tests for complex integrated circuits. The evolution of this test

language has been guided by many considerations, including (1) its implementation in a

working, interactive test system called FIFI, (2) its fit to ideas about the architecture of

high-performance test instruments, and (3) its expressivity for a design-for-testability

strategy for chip designs structured in the general style presented by Mead and Conway

[1].

The scope of this paper is limited, however, to a discussion of the design-for-testability

strategy. The test language is not described fonnally here, but is used in examples with

explanations that should suffice to illustrate some if its capabilities and features. A

technical report on the project is available from Caltech [2].

The design-for-testability strategy discussed in this paper may appear to be somewhat

more abstract than others because it is directed not at the tasks of testing combinational

logic, RAMs, ROMs, state machines, and so on, but at the task of testing the compositions of

such parts given the primitive tests for each of them. By formalizing the testability

attributes of the parts and compositions of a structured design, the design of tests becomes

structured also. The formalism discussed here is also an executable language. The FIFI test

system is a test language interpreter that, when presented with primitive tests and the

system representations discussed in this paper, can test the system.

1. Definition of a Structured System

We are concerned with the problem of testing systems composed of parts. To test such a

system, it is sufficient (1) to test each of the parts, and (2) to verify the integrity of the

"glue," the wiring and possibly logic that connects the parts. Figure 1 illustrates such a

system. Without loss of generality we can discuss testing only one part of a system and all

of its associated glue, with the understanding that the testing task is repeated for each

part.

Each part may be composed of other parts, invoking the definition recursively. Ultimately,

some parts will not be further divided, and these parts are called elements. It is assumed

that tests are available for all of the elements in a system. These tests are called primitive

tests, and are tests that could be applied if the element were directly accessible to the pins

of a tester. The difficult part of testing a complex system, and the purpose of the work

described here, is the testing of an otherwise testable part when it is embedded in a system.

2

external environment

+---+
I +-------+ internal +-------+ system I
1 I par tel -------> I par t 1 I I
I I I test I, I

1 +-------+ +-------+ i
externa I I glue 1
------>1 +-------+ 1
test 1 Ipart B I I

1 lelementl I
I 1 1 1
1 +-------+ 1

+---+
Figure 1: A Structured Design

2. Actions Performed Upon Ports

The connection points of the tester, the system under test, and the parts of the system,

are called ports. A port is a connection to an electrical node (or set of electrical nodes such

as a bus or other parallel signals), and all ports connected to the same node have the same

name. The value associated with the port is normally a voltage interpreted as being in one of

at least two ranges. Each port may perform one of the following actions:

force

feel

undefined

The port drives a value onto the node. For example, a conventional
output forces a value.

The port senses the voltage on a node for a specified value. The
value is required to be static for the entire duration of the feel. If a
feel is performed by a tester and a value other than the specified
value is sensed at any time, an error flag is set.

A port performing the undefined action upon a node has one of two
meanings: (1) the part is neither forcing nor feeling the port (tri-state
condition for outputs, or the value is irrelevant for inputs) or (2) the
part is forcing an unknown value onto the port (perhaps a spurious
transition).

It is important to realize that force and feel, as defined here, are dual actions that are

each associated with values. Feel does not have the meaning of "sense and report," but

rather "sense and compare." In a valid test, or in a valid representation of the behavior of a

part, the parts connected to a port are performing complementary actions at all times. For

example, when one part is feeling the value on a port, some other part must be forcing.

Specifically, there are three combinations of actions that match, and are therefore legal:

1. Force matches feel and the values are the same. This is the normal condition
in which one part sends a signal that another part receives.

2. Force matches undefined and the values are irrelevant. This is the condition
In which one part sends a signal that is irrelevant to and ignored by another
part.

3. Undefined matches undefined and the values are irrelevant. Usually this
corresponds to one part sending an indeterminate value that is irrelevant to
and ignored by another part.

3

An action by a part upon a port is described in the test language by a notation of the form

port operator expression. The symbols used in the test language for operators are: < for

force, > for feel, and a force followed by the expression "null," <null, for undefined. For

example, clk<1 indicates that the clk port is driven to a 1 state.

If < and) are visualized as arrows, the arrows point in the direction of signal flow, but

understand that information flow in test language descriptions and implementations is

strictly one way: from the tester to the device pins, from the pins to the parts, and so on,

regardless of the direction of signal flow. The syntax of the test language enforces this rule

in that (1) only port identifiers are permitted to the left of an operator, and (2) the

expression on the right of the operator may contain constants or variables, but not port

identifiers. Thus it is not possible with the operators described here to create a test

program that senses and assigns to some variable the value on one pin in order to apply that
'.

value later to another pin. This usual feature of algorithmic programming notations is

unnecessary for describing non-adaptive tests, and is incompatible with the pipelining

employed in high-performance test instruments.

3. Small Examples

The time-dependent behavior of the parts and systems we would like to describe consist

of a sequence of actions. The test language denotes the partial ordering of these actions

with a character-based syntax. A group of partially ordered actions is called a behavior

graph. As is usual with programming notations, the separator character "j" is used to denote

sequence, and has lowest precedence. Actions separated by "j" would be parts of

sequential test steps. Actions separated by "," occur concurrently.

Even "combinational" parts exhibit time-dependent behavior that must be accounted for in

representing their behavior. The following behavior graph is one representation (rather

conservative with respect to spurious transitions) of the behavior of a two-input AND gate

with inputs A and B, and output c:

*[A)a, B)b;
C<a&b;
C<null;
A<null, B<null;]

'" [1 indicates indefinite
iteration

output becomes undefined

The behavior consists of an endless cycle of the four actions:

1. The two inputs become defined (stabilize, possibly after spurious transitions)
with the values a and b.

2. Some short time after the inputs become defined, the output becomes defined
(possibly after spurious tranSitions) to the AND function of a and b.

3. In a real AND gate, the output, if it was to change at all in response to an
Input transition, would start to change only after the input started to change.
However, from the standpoint of another part connected to the output node,

4

one would not ordinarily depend on this value being retained once the inputs
have become undefined. In this sense of use, the output can be thought of
as becoming undefined in anticipation of the input changes, and so it is
represented as becoming undefined immediately before the inputs become
undefined. The precise time relations and tolerances between actions
combined with ";" may be defined by language features not discussed here.

4. The inputs become undefined.

The behavior denoted above represents the action the AND gate performs upon its ports.

A test for an AND gate is the action that a tester performs upon the ports of the device. A

test of the AND gate can accordingly be obtained simply interchanging all force and feel

operators, which results in the following test:

A<a, B<b;
C>a&b;
C<null;

A<null and B<null are omitted because a tester has no real need or mechanism for driving

the A and B ports to an undefined value. However, the C<null statement, occurring cyclically

before the input changes, has the important meaning to a tester that C may not be expected

to be in a defined state when the inputs are changed. This behavior graph then represents

the structure of the test vector sequences that would appear in the test of an AND gate,

and an actual test would consist of invoking this behavior graph as a procedure a number of

times with the variables bound at the call to appropriate values. The way the AND gate test

would be defined in the test language is:

define procedure andtest
var a b;

A<a, B<b;
C>a&b;
C<null;

end

The AND gate test would be invoked as follows:

(call andtest a<O, b<O;
8<0, b<1;
a<1, b<O;
8<1, b<1;)

exhaustive test consists
of four vectors

Now, this example, deliberately simple as it is, may appear to be a bit silly -- the gnat and

sledgehammer syndrome. Observe, though, that the procedure defined for a complex system

containing a large number of parts can be as complex as the interconnections between

these parts requires, and can call other procedures for the individual parts. Thus the "parts"

abstraction used in structured design as defined here is mapped into the procedural

5

abstraction in the test language. This mapping might be described as of an "inside-out"

character.

The behavior of devices with state presents no difficulties. For example, the following

represents the behavior of a D-type flip-flop with ports: clk, clock input; D, data input; and

Q, output.

lIIII D>x;
clk>1 ;
clk>O, D(null, Q(x;]

Input becomes valid
clock 0-1
three actions may happen

in any order

Signals in real systems can be generically classified into two categories: (1) signals that

make clean transitions from one state to another, and (2) signals with spurious transitions.

Clock signals characteristically require a clean transition, whereas inputs and outputs of

combinational logic may have spurious transitions.

If one examines the cyclic actions on the same port in the behavior graph above, one

observes that the D input alternates between the actions of D)x and D<null. When the

D(null action is effective, port D may experience any behavior, including an arbitrary number

of transitions. This notational description corresponds to the D input needing to be defined

only for a short period of time surrounding the rising edge of the clock. The clk port

alternates between the actions clk)1 and clk)O, with no indication that the clock input may

have spurious transitions. The a port simply assumes successive values, a<x, and because

there is no case in which a<null, the transitions are represented as clean ones.

Purely combinational logic is tolerant of spurious transitions. These spurious transitions

are compatible with, for example, the LSSD [3] scan path structure that applies shifted

versions of each test vector to combinational logic during the test vector loading and

unloading phase. In the formalization of the behavior of a scan path, the output of the scan

path would be stated as undefined while the vector is shifting.

4. Compositions

When a test is applied to the pins of a chip in order to test a particular part of the chip,

the pattern of signals at the pins is altered by the composition before being applied to the

part. The composition is analogous to a filter between the pins and the part. As illustrated in

figure 2, the filter is composed of the entire system, excepting the part where testing is

directed. The input to the filter is from the tester and the output of the filter is directed to

the part being tested. Multilevel compositions correspond to the cascading of several filters.

The testing task consists of applying known tests to the elemental parts. The difficulty is

that the tests must be applied from the ports of the entire system. Following the filter

analogy, if the output of the last filter is given, an input to the first filter which will produce

the required output, must be found. In test language terms, the inverse filter is called an

6

+-------+ +-------+ +-------+
I H2 I I Hi I I I

T2 ->+system +- Tl ->+ part +- T8 ->+elementl
I I I I I I
+-------+ +-------+ +-------+

T8 Hi H2 T2

Figure 2: Filter Representation of a Test

access procedure, and takes as its argument a primitive test that is to be applied to one

particular part. The concept of an access procedure can be applied repeatedly :to a

multi-level composition of parts. The result of the access procedure is a test that can be

applied to the entire composition of parts and will result in the primitive test being applied to

the part.

Of course for some notorious deSigns, such an access procedure may be practically

impossible to compute, too lengthy to apply economically, or both, in which case the

testability of the design, even though it is composed of individually testable parts, is lacking.

Specific testing styles or disciplines -- LSSD is a particularly good example -- provide

systematic ways of assuring that access procedures exist, are short scale well with

complexity, and are easy to compute.

There are ways of deriving access procedures for more general classes of compositions,

and one of these approaches will now be outlined.

The transfer function of a filter can be described as pairs of behavior graphs. Each pair

represents the actions on the external ports and corresponding actions on the internal ports.

Each pair may contain variables, allowing it to describe many distinct tests.

An access procedure is defined by two behavior graphs, called an external and internal

test. An access procedure is invoked by presenting it with a behavior graph of actions to be

performed on the internal ports. If the behavior graph matches the internal test, the external

test can be returned as the result of the procedure. The capability of an access procedure

derived in this way from a single external behavior and resultant response is limited: it can

work only if presented with behavior graph very similar to its internal test. For practical

testing, each part may have several access procedures that utilize its structure in different

ways.

When composing a system of otherwise testable parts, two things are necessary: (1) the

system have an access procedure for each part, and (2) the internal test of the access

procedures match the required external tests of the parts. If these two criteria are met, the

tests of the parts can be translated by means of the access procedure to tests that can be

applied to the entire composition.

The second criterion is the basis for design independence in the generation of testable

7

systems. The design of a part and design of a composition containing that part can be

carried out independently if the test behavior at the interface between these parts is

specified.

5. Example

Consider testing an elementary part when it is composed with another part, a triple D

flip-flop, as shown in figure 3. (We will later use and AND gate for the elementary part.) Note

that the elementary part is completely surrounded by the triple flip flop, so that none of its

terminals are accessible from the ports of the composition.

+------------+ +-----------+
A1 10 f lip flops I A2 lin terna I I

------>+ d1 q1 +------>+ a device I
81 I 82 I

------>+ d2 q2 +------>+ b I
C1 C2 I I

<------+ q3 d3 +<------+ c I
I I I I
+-----1'------+ +-----------+

elk I
-------------+
Figure 3: System Consisting of Flip Flops and an Internal Part

The behavior of the triple flip-flop with common clock can be represented by the following

behavior graph:

*[A1)a, B1)b, C2)c;
clk)1 ;
A2<a, B2<b, C 1 <c, A 1 <null, B 1 <null, C2<null, clk)O;]

This behavior is a simple extension of that presented for a D flip-flop.

An access procedure can be derived from this program by separating the actions on the

internal and external ports, as follows:

external ports:

*[A1)a, B1)b;
clk)1 ;
C1 <c, A 1 <null, B 1 <null, clk)O;]

internal ports:

*[C2)c;
A2<a, B2<b, C2<null;]

Several <null actions are meaningless and have been removed. The two behavior graphs

8

shown above represent an access procedure. The access procedure is able to apply any

test of th.e form shown for internal ports by applying the program shown for the external

ports. The necessary computation required to generate the external test is just variable

substitution. If the triple D flip-flop were directly accessible to a tester, this access

procedure could be executed by applying the dual of the behavior graph shown above under

"external ports: II.

We can now specify that the elementary part is an AND gate. A test for an AND gate was

described above. Two repetitions of the behavior graph shown above are required to match

one test of the AND gate. This matching is shown below:

Internal test
(two repetitions)

C2>c;
A2<a, B2<b, C2<null;
C2>c;
A2<a, B2<b, C2<null;

AND gate test

A<a, B<b;
C>a&bj
C<null;

In the example above two (different) applications of the internal test are required to

perform one AND gate test. In both applications, the ports A2, B2, and C2 are matched with

ports A, B, and C. In the first application, the variables a and b are matched with the

variables of the same name. In the second application, the variable c is matched with a&b.

The test language code that represents the access procedure is:

define procedure tripleflop
var abc;
A1<a, B1<bj
clk<1 j
C1>c, clk<O;

end

The testing of the AND gate is basically the applicaton of the primitive tests for the AND

gate to the access procedure. The timing can be abstracted away, however. The testing of

the AND gate is performed as follows:

(call andtest a<O, b<O, c>O;
a<O, b(1, c>O;
a<1, b(O, c>O;
a<1, b<1, c>1;)

exhaustive test consists
of four vectors

9

6. Conclusions

The method described in this paper allows the generation of tests for hierarchically

composed systems to be approached in a structured manner. The applications of this method

can cover a spectrum of design disciplines.

At one end of the spectrum, a catalog could be made consisting of parts and their

testability attributes. Systems made using only the parts in the catalog would be guaranteed

testable, and a test language system (such as the FIFI system developed by the authors)

would perform the testing.

At the other end of the spectrum, a designer could customize the design of all the parts in

his system. The testability formalism developed here would aid the designer in partitioning

the design task, aid in documentation, and provide an efficient manner of testing the system.

If a system is not testable, or if the test designer does not know an efficient manner of

testing a system, this method will not help. The method described here merely provides a

manner of formally describing the testability attributes of a design. The designer must

understand the testability attributes before they can be formalized.

7. References

[1] Carver A. Mead and Lynn A. Conway, Introduction to VLSI Systems, Addison-Wesley,

1980.

[2] Erik P. DeBenedictis, "Techniques for Testing Integrated Circuits," Caltech Computer

Science Technical Report #4777 (PhD thesis), August 1982.

[3] E. Eichelberger and T. Williams, "A Logic Design System for VLSI Testability,"

Proceedings of the 14th Design Automation Conference, pp 462-468, 1977.

