2,168 research outputs found

    Prospects for Stochastic Background Searches Using Virgo and LSC Interferometers

    Full text link
    We consider the question of cross-correlation measurements using Virgo and the LSC Interferometers (LIGO Livingston, LIGO Hanford, and GEO600) to search for a stochastic gravitational-wave background. We find that inclusion of Virgo into the network will substantially improve the sensitivity to correlations above 200 Hz if all detectors are operating at their design sensitivity. This is illustrated using a simulated isotropic stochastic background signal, generated with an astrophysically-motivated spectrum, injected into 24 hours of simulated noise for the LIGO and Virgo interferometers.Comment: 11 pages, uses IOP style files, submitted to CQG for GWDAW11 proceedings; revised in response to referee comment

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Sensitivity of a VIRGO pair to stochastic GW backgrounds

    Get PDF
    The sensitivity of a pair of VIRGO interferometers to gravitational waves backgrounds (GW) of cosmological origin is analyzed for the cases of maximal and minimal overlap of the two detectors. The improvements in the detectability prospects of scale-invariant and non-scale-invariant logarithmic energy spectra of relic GW are discussed.Comment: 25 pages in RevTex style with 6 figure

    Microscopic derivation of Ginzburg-Landau equations for coexistent states of superconductivity and magnetism

    Full text link
    Ginzburg-Landau (GL) equations for the coexistent states of superconductivity and magnetism are derived microscopically from the extended Hubbard model with on-site repulsive and nearest-neighbor attractive interactions. In the derived GL free energy a cubic term that couples the spin-singlet and spin-triplet components of superconducting order parameters (SCOP) with magnetization exists. This term gives rise to a spin-triplet SCOP near the interface between a spin-singlet superconductor and a ferromagnet, consistent with previous theoretical studies based on the Bogoliubov de Gennes method and the quasiclassical Green's function theory. In coexistent states of singlet superconductivity and antiferromagnetism it leads to the occurrence of pi-triplet SCOPs.Comment: 18 page

    Low temperature ellipsometry of NaV2O5

    Full text link
    The dielectric function of alpha'NaV2O5 was measured with electric field along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak upon increasing temperature with an activation energy of about 25meV, indicating that a finite fraction of the rungs becomes occupied with two electrons while others are emptied as temperature increases. No appreciable shifts of peaks were found s in the valence state of individual V atoms at the phase transition is very small. A remarkable inflection of this temperature dependence at the phase transition at 34 K indicates that charge ordering is associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In press in Physical Review B. REVTeX, 4 pages with 4 postscript figure

    A comparison of methods for gravitational wave burst searches from LIGO and Virgo

    Get PDF
    The search procedure for burst gravitational waves has been studied using 24 hours of simulated data in a network of three interferometers (Hanford 4-km, Livingston 4-km and Virgo 3-km are the example interferometers). Several methods to detect burst events developed in the LIGO Scientific Collaboration (LSC) and Virgo collaboration have been studied and compared. We have performed coincidence analysis of the triggers obtained in the different interferometers with and without simulated signals added to the data. The benefits of having multiple interferometers of similar sensitivity are demonstrated by comparing the detection performance of the joint coincidence analysis with LSC and Virgo only burst searches. Adding Virgo to the LIGO detector network can increase by 50% the detection efficiency for this search. Another advantage of a joint LIGO-Virgo network is the ability to reconstruct the source sky position. The reconstruction accuracy depends on the timing measurement accuracy of the events in each interferometer, and is displayed in this paper with a fixed source position example.Comment: LIGO-Virgo working group submitted to PR

    IceCube Science

    Full text link
    We discuss the status of the kilometer-scale neutrino detector IceCube and its low energy upgrade Deep Core and review its scientific potential for particle physics. We subsequently appraise IceCube's potential for revealing the enigmatic sources of cosmic rays. After all, this aspiration set the scale of the instrument. While only a smoking gun is missing for the case that the Galactic component of the cosmic ray spectrum originates in supernova remnants, the origin of the extragalactic component remains as inscrutable as ever. We speculate on the role of the nearby active galaxies Centaurus A and M87.Comment: 19 pages, 8 figures; Talk at Discrete 08, Valencia, Spai

    Low-energy excitations in NaV2O5

    Full text link
    In the (ab) polarized Raman scattering spectra of NaV2O5 single crystals, measured with 647.1 nm laser line at T < Tc, we found two modes at 86, and 126 cm-1 not previously reported. These two modes, together with 66, and 106 cm-1 modes, make an array of four low-energy equidistant modes below the energy onset of the continuum at about 132 cm-1. All four modes are strongly suppressed by increasing Na deficiency, indicating their nonvibrational origin and the existence of a quantum phase transition at critical Na deficiency between 3 and 4%. These results question current understanding of NaV2O5 as quasi one-dimensional Heisenberg antiferromagnet.Comment: 6 pages, 3 figure

    Detection in coincidence of gravitational wave bursts with a network of interferometric detectors (I): Geometric acceptance and timing

    Full text link
    Detecting gravitational wave bursts (characterised by short durations and poorly modelled waveforms) requires to have coincidences between several interferometric detectors in order to reject non-stationary noise events. As the wave amplitude seen in a detector depends on its location with respect to the source direction and as the signal to noise ratio of these bursts are expected to be low, coincidences between antennas may not be so likely. This paper investigates this question from a statistical point of view by using a simple model of a network of detectors; it also estimates the timing precision of a detection in an interferometer which is an important issue for the reconstruction of the source location, based on time delays.Comment: low resolution figure 1 due to file size problem
    corecore