109 research outputs found

    Electronic noise-free measurements of squeezed light

    Full text link
    We study the implementation of a correlation measurement technique for the characterization of squeezed light. We show that the sign of the covariance coefficient revealed from the time resolved correlation data allow us to distinguish between squeezed, coherent and thermal states. In contrast to the traditional method of characterizing squeezed light, involving measurement of the variation of the difference photocurrent, the correlation measurement method allows to eliminate the contribution of the electronic noise, which becomes a crucial issue in experiments with dim sources of squeezed light.Comment: submitted for publicatio

    Dispersion spreading of biphotons in optical fibres and two-photon interference

    Full text link
    We present the first observation of two-photon polarization interference structure in the second-order Glauber's correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fibre and the coincidence distribution is analyzed by means of the START-STOP method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.Comment: Accepted for publication in Phys.Rev.Let

    Dispersion spreading of polarization-entangled states of light and two-photon interference

    Full text link
    We study the interference structure of the second-order intensity correlation function for polarization-entangled two-photon light obtained from type-II collinear frequency-degenerate spontaneous parametric down-conversion (SPDC). The structure is visualised due to the spreading of the two-photon amplitude as two-photon light propagates through optical fibre with group-velocity dispersion (GVD). Because of the spreading, polarization-entangled Bell states can be obtained without any birefringence compensation at the output of the nonlinear crystal; instead, proper time selection of the intensity correlation function is required. A birefringent material inserted at the output of the nonlinear crystal (either reducing the initial o-e delay between the oppositely polarized twin photons or increasing this delay) leads to a more complicated interference structure of the correlation function.Comment: Extended version of our recent PRL paper. Submitted to PR

    Generation of picosecond pulsed coherent state superpositions

    Get PDF
    We present the generation of approximated coherent state superpositions - referred to as Schr\"odinger cat states - by the process of subtracting single photons from picosecond pulsed squeezed states of light at 830 nm. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC) in a periodically poled KTiOPO4 crystal while the single photons are probabilistically subtracted using a beamsplitter and a single photon detector. The resulting states are fully characterized with time-resolved homodyne quantum state tomography. Varying the pump power of the SPDC, we generated different states which exhibit non-Gaussian behavior.Comment: 17 pages, 8 figures, 3 table

    Experimental realization of a measurement conditional unitary operation at single photon level and application to detector characterization

    Full text link
    Our last experimental results on the realization of a measurement-conditional unitary operation at single photon level are presented. This gate operates by rotating by 90o90^o the polarization of a photon produced by means of Type-II Parametric Down Conversion conditional to a polarization measurement on the correlated photon. We then propose a new scheme for measuring the quantum efficiency of a single photon detection apparatus by using this set-up. We present experimental results obtained with this scheme compared with {\it traditional} biphoton calibration. Our results show the interesting potentiality of the suggested scheme.Comment: to appear in Proc. of SPIE meeting, Denver august 200

    Correlation Measurement of Squeezed Light

    Get PDF
    We study the implementation of a correlation measurement technique for the characterization of squeezed light which is nearly free of electronic noise. With two different sources of squeezed light, we show that the sign of the covariance coefficient, revealed from the time resolved correlation data, is witnessing the presence of squeezing in the system. Furthermore, we estimate the degree of squeezing using the correlation method and compare it to the standard homodyne measurement scheme. We show that the role of electronic detector noise is minimized using the correlation approach as opposed to homodyning where it often becomes a crucial issue

    Measurement of Photon Statistics with Live Photoreceptor Cells

    Full text link
    We analyzed the electrophysiological response of an isolated rod photoreceptor of Xenopus laevis under stimulation by coherent and pseudo-thermal light sources. Using the suction electrode technique for single cell recordings and a fiber optics setup for light delivery allowed measurements of the major statistical characteristics of the rod response. The results indicate differences in average responses of rod cells to coherent and pseudo-thermal light of the same intensity and also differences in signal-to-noise ratios and second order intensity correlation functions. These findings should be relevant for interdisciplinary studies seeking applications of quantum optics in biology.Comment: 6 pages, 7 figure

    Orthogonality of Biphoton Polarization States

    Full text link
    Orthogonality of two-photon polarization states belonging to a single frequency and spatial mode is demonstrated experimentally, in a generalization of the well-known anti-correlation 'dip' experiment.Comment: Submitted to Phys.Rev.Let
    corecore