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We present the generation of approximated coherent state superpositions—referred to as Schrödinger cat states—
by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vac-
uum states are produced by spontaneous parametric down-conversion (SPDC) in a periodically poled KTiOPO4
crystal while the single photons are probabilistically subtracted using a beamsplitter and a single photon detector.
The resulting states are fully characterized with time-resolved homodyne quantum state tomography. Varying the
pump power of the SPDC, we generated different states which exhibit non-Gaussian behavior. © 2014 Optical
Society of America

OCIS codes: (270.0270) Quantum optics; (190.4410) Nonlinear optics, parametric processes; (270.6570)
Squeezed states; (320.5390) Picosecond phenomena; (270.5585) Quantum information and processing.
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1. INTRODUCTION
Quantum information processing solely based on Gaussian
states and Gaussian operations is a largely matured field of
research. The preparation of squeezed states—the ubiquitous
resource in many Gaussian protocols—has experienced large
progress in recent years. States with a high purity or a high
degree of squeezing have been produced [1–4]. Moreover,
Gaussian projectors can be implemented using homodyne
detection, which is capable of reaching near-unity detection
efficiency [1]. Finally, Gaussian displacement operations
combined with low-noise linear feedback have been imple-
mented with high quality [5–8]. This progress has lead to
the implementation of various Gaussian protocols such as
quantum teleportation [9], quantum key distribution [10],
quantum cloning [11], quantum secret sharing [12], and quan-
tum computation [13,14].

However, several no-go theorems exist for systems consist-
ing of purely Gaussian states and Gaussian operations. With
this constrained set of states and operations it is impossible to
perform entanglement distillation [15–17], quantum error cor-
rection [18], universal quantum computing [19,20], quantum
bit commitment [21], and to violate Bell’s inequality [22].
To realize these protocols, non-Gaussian approaches are re-
quired. This non-Gaussianity can be injected into the system
at different stages. It can enter through a non-Gaussian meas-
urement strategy [23–25], non-Gaussian noise characteristics
[26], or it can be incorporated through a non-Gaussian state
preparation strategy [27–32].

Important examples of a pure non-Gaussian state are the
photon number eigenstates, the Fock states jni, (n � 1; 2…).

Such states have been prepared and fully characterized in
optical systems using SPDC followed by a non-Gaussian her-
alding measurement [33–40]. Another family of non-Gaussian
states, which has gained much interest in recent years, are
the Schrödinger cat states which are superpositions of two
coherent states of different phase, jαi � j − αi. Despite the
constituents being Gaussian, the superposition exhibits strong
non-Gaussianity which is sufficient for the realization of vari-
ous protocols, examples being the realization of quantum
information [41,42], quantum computation [27,43–46], error
correction of Gaussian noise [30], and the violation of Bell’s
inequality [31,47–49].

It has been demonstrated that such coherent state superpo-
sitions (CSS) with a moderate amplitude α ≲ 1 can be well ap-
proximated by a photon-subtracted squeezed state [50,51],
or equivalently, a squeezed single-photon state. Fidelities be-
tween the ideal CSS state and the photon-subtracted squeezed
state as a function of the excitation, α, of the CSS and the de-
gree of squeezing of the squeezed state are shown in Fig. 1.
The moderate amplitude of the CSS can be nondeterministi-
cally amplified to a larger amplitude CSS by means of linear
interference and heralding based on photon counting or
homodyne detection events [28,52–54]. A large CSS can also
be prepared through a conditional homodyne measurement
on a Fock state in which the amplitude of the CSS state scales
with the number of photons in the Fock state [55].

Inspired by these ideas for the generation of CSS and
motivated by the potential applications, various groups have
realized photon subtraction with squeezed states [55–61].
These implementations have been carried out either with
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continuous wave (CW) or pulsed light sources, and with wave-
lengths ranging from the near-infrared to the telecommunica-
tion regime. The photon subtraction has been carried out
using an asymmetric beamsplitter that reflects a small portion
of the light in which a photon is measured and thus subtracted
from the squeezed state. The measurement has been realized
with single-photon avalanche photodiodes (APD) as well as
with photon-number-resolving transition edge sensors.

The largest directly measured value of the Wigner function
negativity is −0.171 and it is obtained using CW squeezed
states [62]. Using pulsed instead of CW squeezed light, the re-
ported negativities as well as the purities of the generated non-
Gaussian states are much lower. Despite the lower quality of
the generated states, there has been much interest in pulsed
experiments due to the relative simplicity of the experimental
setup and the inherent temporal confinement of the generated
states. Previous pulsed experiments on generating CSS with a
negative Wigner function have employed femtosecond pulsed
lasers [35,59]. In these experiments, the nonlinear crystal used
for squeezed light generation was kept in the submillimeter
range in order to avoid the detrimental effects of group veloc-
ity dispersion (GVD) and gain induced diffraction [63].

The advantage of picosecond over femtosecond pulses is
that GVD is relatively reduced, making it possible to employ
a longer nonlinear crystal. In addition, dispersion effects in the
transmission line are also reduced. Namekata et al. have re-
cently realized a non-Gaussian operation by using a 5 ps
pulsed fiber laser at 1560 nm and a 3 mm long, periodically
poled, lithium niobate waveguide. However, no negative val-
ues in the measured Wigner functions were observed due to
the low overall efficiency of the experiment and the lowmodal
purity of the generated states [60].

In this paper, we present the first experimental demonstra-
tion of CSS with a negative Wigner function in the ps-pulsed
regime. Single photons are subtracted from squeezed vacuum
states produced in a 3 mm long quasi-phase matched periodi-
cally poled KTiOPO4 (PPKTP) crystal pumped by 4.6 ps laser
pulses at 830 nm. The generated photon-subtracted squeezed
vacuum states are measured and characterized with various
squeezing factors. All the experimental results demonstrate

strong non-Gaussian properties and the largest directly
measured negativity was 0.023 without any loss-corrections.

2. EXPERIMENT
A CSS state with a small amplitude can be approximated by a
photon-subtracted squeezed state, and it can be fully charac-
terized by means of its Wigner function which is obtainable
by homodyne tomography. In the following we present the
different parts of our experimental setup to generate and char-
acterize a CSS. We introduce the two required parametric
processes (up-conversion and down-conversion), the photon-
subtraction setup, and finally the homodyne detector. We also
briefly discuss a simple model for predicting the performance
of the experiment.

The experimental setup is shown in Fig. 2. We used a
cavity-dumped titanium-sapphire pulsed laser (Tiger-PS,
Time-Bandwidth Products), which produced nearly Fourier-
transform-limited pulses with a duration of 4.6 ps at 830 nm
with an average energy up to 40 nJ and a repetition rate of
815 kHz. With a WS6 HighFinesse wavelength meter, the
center wavelength and its bandwidth of the pulses were mea-
sured to be 829.7 and 0.16 nm, respectively, corresponding to
a spectral width of 70 GHz. A fraction of about 10% was used
as a local oscillator (LO) for homodyne detection, a weak seed
beam was directed to the parametric down-conversion
process for alignment and the remaining part was directed
to a frequency doubling process.

A. Frequency Doubling
For frequency doubling, a 3 mm long periodically poled KTP
crystal (PPKTP1) was used. The crystal poling-period was
chosen for first order quasi-phase-matching corresponding
to a poling period of Λ ∼ 3.8 μm with all fields polarized along
the crystal’s z axis. The length of the crystal was chosen to be
3 mm for a compromise between having a large interaction
length and avoiding phase mismatch due to GVD.

The beam waist was set to w0 ∼ 90 μm, thus achieving
a weak focusing condition with the depth-of-focus
(2z0 ∼ 60 mm) being 20 times longer than the crystal length
[64,65]. The second harmonic conversion efficiency, η, was in-
vestigated as a function of input power of the fundamental
beam and the result is displayed in Fig. 3. A maximum fre-
quency doubling efficiency of 32% was achieved for an inci-
dent average power of 33 mW. The spectral properties of
the resulting frequency doubled light was investigated by a
WS6 HighFinesse wavelength meter and it was measured to

Fig. 1. Fidelity between a photon-subtracted squeezed state and an
ideal coherent state superposition, jαi − j − αi, for different degrees of
squeezing. It can be seen that the fidelity remains high, F > 0.9, for α
up to 1, provided the squeezing degree is not too large.

Fig. 2. Schematic of the experimental setup. The cavity dumped la-
ser emits 4.6 ps optical pulses at 830 nm with a repetition frequency of
815 kHz. ABS1, 90∕10 beamsplitter; BF, blue filter; DM, dichroic
mirror; RF, red filter; ABS2, asymmetric beamsplitter with R � 7.7%;
SMF, single-mode fiber; IF, interference filter; APD, avalanche photo-
diode; PBS, polarizing beamsplitter; HWP, half-wave plate.
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have a center wavelength of 414.8 nm and a bandwidth of
∼0.1 nm, corresponding to a spectral width of about 174 GHz.

B. Parametric Down-Conversion
After the frequency doubling crystal, the residual light at
830 nm was filtered out using a series of filters. The filtered
blue light was then focused into a second PPKTP crystal
(PPKTP2) used to generate a squeezed vacuum through the
SPDC. It has been shown that for single pass pulsed SPDC
experiments the gain-product gmingmax, where gmin�gmax� is
the attenuation (amplification) factor is enhanced by defocus-
sing the pump [65,66]. This was confirmed in our setup, and
the waist of the pump was set tow0;p ∼ 150 μm and a depth-of-
focus of 2z0 ∼ 340 mm. The pump can thus be regarded as a
plane wave within the length of the crystal, leading to an im-
provement of the degree of squeezing [66]. After the SPDC, the
remaining pump was filtered out using a series of filters. The
generated squeezed vacuum was directed to an asymmetric
beamsplitter (ABS2) with a reflectivity of R ≈ 7.7%. The re-
flected part was directed to an avalanche photodiode, while
the transmitted part was subjected to full quantum state
tomography by means of time-domain balanced homodyne
detection (TD-BHD) [67,68].

In pulsed experiments, squeezing is often generated in a sin-
gle pass configuration without the use of enhancement
cavities. Thus the squeezing is generated in many different
spatial and temporal modes [69–71]. The mode (and thus the
degree of squeezing) being measured by the homodyne detec-
tor depends on the spatiotemporal profile of the LO: the mode
of the squeezing spectrum that spatially and temporally over-
laps with the LO will be measured by the homodyne detector.
The amount of measured squeezing can be optimized by in-
jecting a weak seed beam, corresponding to the mode of
the LO, into the SPDC crystal and studying the classical para-
metric (de-)amplification of the seed beam. Depending on the
relative phase between the seed and the pump, the seed can
be either amplified or deamplified. Optimal phase-matching

between the two waves is obtained for w0;p∕w0;s �
���
2

p
[65],

and thus we set the beam waist of the seed (w0;s �
106 μm). We achieved an optimal deamplification of gmin �
0.38 and an amplification of gmax � 4.6 for a pump power

of 9 mW. A full characterization of the gains, gfmin;maxg, as a
function of pump power is shown in Fig. 4.

Using a simple model we find [72]

gfmin;maxg � ε exp�f�2r;−2rg� � �1 − ε�; (1)

where exp��2r� is the intrinsic gain and ε is a parameter de-
scribing the spatial overlap between the seed and the pump. ε
was experimentally estimated to be 0.77� 0.01 (see below).
Through power-shape fitting, the dependence of r on the
pump power is found to be r � 0.28

������������������
Pp�mW�p

. This measure-
ment of the classical gain also shows that within the gain
range of our experiment, the effect of gain-induced diffraction
is negligible [63,66].

C. Time-Domain Balanced Homodyne Detection
The measurement setup for homodyne detection is shown in
Fig. 2. The transmitted squeezed vacuum state was superim-
posed with the LO at PBS1, the combined optical pulses were
split at PBS2 and the resulting two beams were focused onto a
pair of PIN photodiodes (Hamamatsu, S3883, quantum effi-
ciency of ηph � 0.95� 0.02). Using a HWP, the splitting ratio
of PBS2 was tuned to balance the homodyne detector. The
detector used in the experiment is based on the design by
Hansen et al. [68]. Its output was recorded by a digital oscillo-
scope (LeCroy, LT374L) using the cavity dumper signal from
the laser as a trigger. The final quadrature value is then ex-
tracted by integrating the signal over the individual pulses.

The integration requires a well-defined pulse window, Tw,
which is determined by the repetition rate of the laser f Rep �
815 kHz yielding Tw ≈ 1.2 μs. The detector has a bandwidth of
2 MHz which is confirmed by the generation of 500 ns wide
electronic pulses resulting from the detection of the picosec-
ond optical pulses. Since electronic pulse is shorter than the
pulse window, only a fraction of the pulse window contains
valuable information. As a result, only a part of the measured
pulse contributes to the integration, used to extract the quad-
rature values. We investigated the signal-to-noise ratio (SNR)
(shot noise variance to electronic noise variance) of the

Fig. 3. (a) Blue diamonds correspond to the second-harmonic gen-
eration conversion efficiency for different input powers of the funda-
mental beam, PF . These points are fitted with η � η∞ tanh2�g �������

PF

p �,
with η∞ � 0.53 and g � 0.18. Red triangles are the total generated
SHG power for different power levels of the fundamental beam. Fig. 4. Classical parametric gain versus average pump power, Pp.

The squares correspond to the measured deamplification values,
whereas the diamonds are the measured amplification values. The
red and orange lines are fits using Eq. (1), with the intrinsic parametric
gain r � 0.28

�������������������
Pp�mW�p

and ε � 0.77� 0.01.
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detection scheme for various choices of a weight function
folded with the measured pulse. It was found that a simple
boxcar-average, encompassing about 40% of the measurement
window, was an optimal choice. The shot noise reference is
obtained by measuring a vacuum input state. The reference
level is known to increase linearly with the LO power.
To verify that the system was indeed shot noise limited, we
measured the shot noise as a function of the LO power, see
Fig. 5(a). The electronic noise was measured to be 3.7 mV2

which corresponds to 530 electrons∕pulse. In Fig. 5(a), it is
clearly seen that the shot noise depends linearly on the LO
power, and the gain of the detector was found to be
13.6 mV2∕106 photons per pulse. In Fig. 5(b), the ratio be-
tween the shot noise and the electronic noise (electronic
noise clearance) is plotted as a function of the LO power.
It can be seen that the noise clearance surpasses 23 dB when
the LO pulse contains more than 70 × 106 photons (corre-
sponding to a power of ∼12 μW). This corresponds to an
electronic noise equivalent quantum efficiency of ηel ≥ 99.5�
0.5% [73].

The overall homodyne detection efficiency ηhd is given by

ηhd � ηopη
2
mmηphηel; (2)

where ηop is the propagation efficiency of the state through
optical components and ηmm is the degree of mode-matching

between the LO and the squeezed pulse. These values were
measured to be ηop � 0.90� 0.02 and ηmm � 0.95� 0.02,
giving a total homodyne efficiency of ηhd � 0.77� 0.02.

D. Photon Subtraction
The reflected photons from ABS2 were detected by a fiber
coupled APD (Perkin-Elmer SPCM-AQR-14-FC). Using this
signal as a trigger, we conditionally prepared a photon-
subtracted squeezed state. To reduce the effect of detector
dark counts, the trigger signal for the homodyne measurement
is derived by correlating the APD signal with the cavity
dumper signal (see Fig. 2). By setting the coincidence window
to 120 ns—corresponding to 1∕10 of the total measurement
window—we achieved a 10fold decrease in the detector dark
counts, resulting in a dark count rate of 2.0� 0.5 s−1. To en-
sure that the APD detection events are spatially and spectrally
matched with the optical mode of the LO it is necessary to
employ filtering in the APD arm. The spectral filtering was car-
ried out using a fiber-coupled tunable Fabry–Perot (FP) filter
cavity (Micron Optics, FFP-TF-830-005). It was coupled via
two 1.5 meter long single-mode fiber pigtails for spatial filter-
ing. The bandwidth of the filter was 22 GHz corresponding to
0.05 nm, and the central wavelength could be tuned using a
voltage supply. The total detection efficiency of the heralding
channel was estimated to be about 10� 5% including the cou-
pling efficiency to the fiber, the peak transmission of the FP
filter, and the detection efficiency of the APD.

E. Gaussian Model for Estimation of Photon-Subtracted
Squeezed State
In order to predict the performance of the photon-subtraction
experiment, we derived a simple model [35,57,74]. The model
takes into account various experimental imperfections, which
could compromise the quality of the prepared output states.
The analysis is broken into three parts. The first part is the
generation of the squeezed state. The second is the tap-off
on the asymmetric beamsplitter and projection onto the
on–off click detector with a filter in front. Finally, the third
part is the imperfect homodyne detector used for characteri-
zation. We choose to work with the Wigner quasi-probability
distributions since they provide a convenient framework for
such types of models. In the Wigner picture the vacuum state
is given by a simple Gaussian distribution in the quadrature
variables X̂ � �x; p�T

W0�X̂� �
e−x

2
−p2

π
: (3)

A squeezed state can be written in the same way with the var-
iables rescaled according to the quadrature variances Vx;p

Ws�X̂� �
e
−

x2
Vx
−

p2

Vp

π
������������
VxVp

p ; (4)

where the Heisenberg uncertainty principle constrains the
variances as VxVp ≥ 1. The squeezed state is split on an asym-
metric beamsplitter with a reflectivity R, and one part is mea-
sured using the positive operator value measure (POVM)
element, Λ̂ � 1̂ − j0ih0j [75],

(a)

(b)

Fig. 5. (a) Quadrature variance measurement of the shot noise as a
function of the LO power. (b) SNR of the shot noise variance as a
function of the LO power. ([mio] stands for “million.”)
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Wout�X̂1� �
1
2π

Z
W�X̂1; X̂2�WΛ�X̂2�dX̂2; (5)

where W�X̂1; X̂2� is the Wigner function of the state after the
asymmetric beamsplitter and WΛ�X̂2� is the Wigner function
for the POVM element.

In Section 2.D, we described how a proper filtering in the
heralding arm was necessary in order to ensure that identical
modes were detected by the APD and the homodyne detector
simultaneously. However, in practice, some false modes will
be detected by the APD. This will be modeled by the modal
purity parameter Ξ, and it describes the probability that the
photon detected from the APD came from the targeted optical
mode. The output from the system can then be expressed as
follows:

Wout;Ξ�X̂� � ΞWout�X̂� � �1 − Ξ�Ws�X̂�; (6)

where Ws�X̂� is the state we see when the APD detections are
uncorrelated with the optical mode used in the experiment.

3. EXPERIMENTAL RESULTS
A. Squeezed Vacuum
Using the data acquisition method as described in Section 2.C,
the squeezed vacuum produced by the SPDC was character-
ized. The relative phase between the LO and the quantum state
was scanned by a sawtooth modulation applied to a piezoc-
rystal attached to a highly reflecting mirror placed in the
LO arm. The sampling rate and acquisition time of the oscillo-
scope was set as 100 MS∕s and 80 ms, then we acquired
∼65; 200 quadrature values in one run. The minimum and
maximum quadrature variances of the squeezed pulses were
measured as a function of pump power and the measured
values are shown in Fig. 6.

Assuming a loss model, the squeezing and antisqueezing
variances, V fmin;maxg, can be fitted to a simple relation

V fmin;maxg � ηtot�gmin; gmax� � �1 − ηtot�Vvac; (7)

where gfmin;maxg is the parametric gain, ηtot is the total detec-
tion efficiency, and Vvac is the quadrature variance of the vac-
uum state. By setting the parametric gain to the values found
in Section 2.B, we find reasonable fits to both series of data for
ηtot � 0.62� 0.01, which is apparently lower than the exper-
imentally accessed one of 0.77 (see Section 2.C). Part of the
discrepancy is caused by the tap-off beamsplitter, which adds
8% loss to the squeezed states. The remaining discrepancy is
about 12%, which we speculate to result from a mismatch
between the temporal modes of the LO and the squeezed vac-
uum [64,76]. However, as this loss effect has not been care-
fully studied and localized, we will use η � 0.77 as the
estimated detection efficiency to correct the experimental
data for losses.

Using the experimental parameters in Fig. 6 as well as the
formalism given in Section 2.E, the expected properties of
the photon-subtraction squeezed state can be theoretically
predicted. The estimated values for the fidelity to the odd
cat state Fodd, its amplitude αodd, and the negativity of its
Wigner function at the origin W�0; 0�, corresponding to the
photon-subtraction squeezed states under four different pump
power levels, are listed in Table 1 and Table 2 (corrected for
detection losses).

It is clear that any one of the photon-subtracted squeezed
states is expected to exhibit strong non-Gaussianity with rel-
atively large negativities of the Wigner functions [37]. Accord-
ing to [77], the state prepared by conditionally subtracting a
single photon from a squeezed vacuum state was non-
Gaussian even when its Wigner function was positive at the
origin.

B. Photon-Subtracted Squeezed Vacuum
Next, we prepared photon-subtracted squeezed states for dif-
ferent pump powers ranging from 2 to 8 mW. In this range, the

Fig. 6. Measured squeezing and antisqueezing variances as a func-
tion of the pump power. The blue diamonds are the measured maxi-
mum variances (antisqueezing), the black squares are the measured
minimum variances (squeezing). The orange and red lines are the fit-
tings according to Eq. (7), where ηtot � 0.62� 0.01 are given.

Table 1. Estimation of the Parameters

Characterizing the Photon-Subtracted

Squeezed State for Different Pump Power

Levelsa

Pp (mW) Fodd α W�0; 0�
2.0 0.64 0.87 −0.09
4.0 0.58 1.05 −0.06
6.0 0.55 1.20 −0.04
8.0 0.52 1.32 −0.03

aThe predictions are based on the measured values for the
squeezed vacuum states. In these estimates, we have set the
mode match parameter Ξ to unity for all power levels.

Table 2. Estimation of the Parameters

Characterizing the Photon-Subtracted

Squeezed State for Different Pump Power

Levelsa

Pp (mW) Fodd α W�0; 0�
2.0 0.84 0.99 −0.21
4.0 0.74 1.18 −0.16
6.0 0.69 1.34 −0.13
8.0 0.63 1.45 −0.11

aAfter correcting for the homodyne detection losses of
1 − η � 0.23.
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photon detection rate of the APD varied from 400 to 4000 s−1.
Each time a detection event from the APDwas correlated with
the sync signal from the laser, a trigger signal was derived and
sent to the oscilloscope, as seen in Section 2.A. For every trig-
ger signal, the digital oscilloscope sampled the homodyne
signal for 1 μs with a sampling rate of 250 MS∕s, making
up a single measurement segment. Due to the limited memory
of the oscilloscope, only 4000 data segments can be consecu-
tively stored. The quadratures were extracted in the same way
as for the squeezing measurement. During one measurement

series the relative phase between the LO and the quantum
state was scanned over a range of 0–3π.

We used maximum likelihood estimation to reconstruct the
prepared quantum state [78–80]. In order to reconstruct the
quantum state, an estimation of the phase reference was re-
quired. Since the phase was scanned, we did not have a stable
phase reference. In order to extract the phase information,
the quadrature data was stored in bins of 100 quadratures
and the variance of each bin was evaluated. The phase of
bin i was initially assigned by comparing its variance to the

Fig. 7. Plot of the Wigner functions, the projected Wigner functions, the density matrices, and the photon distributions of the reconstructed states
for pump powers from 2 to 8 mW. There are no corrections for losses in these plots.
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minimum and maximum variances using the relation Vi�θi� �
Vmin cos2 θi � Vmax sin2 θi, where θi is the phase associated
with bin i. Without loss of generality, the assigned phase
was chosen between 0 and π∕2. By using a saw tooth function
to fit θi, the phase information for each measurement run
was smoothly estimated. The phase-assigned quadrature files
were then concatenated, and the entire batch of quadrature
measurements was used for reconstruction. Based on the
above algorithm, we reconstructed the density matrices and
from those we calculated the Wigner quasi-probability

distributions, see Fig. 7 (without loss-correction) and Fig. 8
(corrected for losses).

From Fig. 7 we see that the generated states are non-
Gaussian and nonclassical. Moreover, it is evident that the
Wigner functions become more squeezed as the pump power
increases while the dip around the origin retains its structure.
The dip attains a negative value for all realizations if the meas-
urement results are corrected for losses, as seen in Fig. 8.
The maximum measured negativity for the uncorrected data
is W�0; 0� � −0.023 which corresponds to a negativity of

Fig. 8. Plot of the Wigner functions, the projected Wigner functions, the density matrices, and the photon distributions of the loss-corrected
reconstructed states for pump powers from 2 to 8 mW.
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W�0; 0� � −0.063 after loss correction. The fidelities between
the experimentally produced states and the ideal cat states
(maximized over the excitations α) are summarized in Table 3.

By comparing the results in Table 3 with the predictions in
Table 1 we see that the fidelities, as well as the negativities,
are generally smaller than predicted. The discrepancy, how-
ever, gets smaller at higher pump powers. This effect is caused
by slow instabilities of the experimental setup which become
significant for longer measurement runs as is the case for low
pump powers where the run time is about 10 s (to acquire 4000
quadrature values). For high powers, however, the measure-
ment time (1–2 s) is shorter and thus the influence of insta-
bilities is less pronounced. The main source of instability is
a mechanical drift of the filtering Fabry–Perot cavity which
was not actively stabilized during the measurement. A drift
of the cavity results in the detection by the APD of the fre-
quency modes, which are different from the ones measured
at the homodyne detector, which results in degradation of
the performance. This corresponds to a lower value of the
parameter Ξ in Eq. (6). To estimate values for the mode match
parameter Ξ for the different power levels, we fit the theoreti-
cal predictions to the actual measurement results by using Ξ
as a fitting parameter. The obtained values of Ξ for which the
theoretical fidelities and Wigner function negativities match
the experimental ones are shown in Table 3, which shows that
the mode matching parameter is increasing for increasing
pump powers.

Incorporating the generalized Bernoulli transformation into
the maximum likelihood algorithm, the homodyne detection
inefficiency can be corrected [80]. As mentioned above, we
used the conservative estimate of the detection efficiency of
77% for the correction in order to avoid overestimating the
negativities of the corrected Wigner functions. The Wigner
functions after correction are displayed in Fig. 8, and the re-
sults for the fidelities, negativities, and sizes are summarized
in Table 4.

4. CONCLUSION
We have presented the preparation of photon-subtracted
squeezed states in a system based on picosecond pulsed laser

pulses. It is based on generating a squeezed vacuum from
SPDC in a PPKTP crystal followed by single photon subtrac-
tion, enabled by the reflection of a single photon on an asym-
metric beamsplitter and its detection by the APD. Various
states were produced with varying degree of squeezing.
The resulting states were fully characterized by homodyne
tomography with which the Wigner functions and density ma-
trices were reconstructed. We found a maximum negativity of
W�0; 0� � −0.023 without any loss-corrections and W�0; 0� �
−0.063 after loss-correction. The negativity appeared to be
largest for the largest degrees of squeezing. It is attributed
to the shorter measurement time associated with larger
squeezing and thus greater robustness to instabilities of the
setup. To improve the results, the setup should be made more
stable through miniaturization, faster measurements, and
active control of some key parts of the experiment. Such
improvements serve as an outlook for future experiments.
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