10,786 research outputs found

    On stability of the Hamiltonian index under contractions and closures

    Get PDF
    The hamiltonian index of a graph GG is the smallest integer kk such that the kk-th iterated line graph of GG is hamiltonian. We first show that, with one exceptional case, adding an edge to a graph cannot increase its hamiltonian index. We use this result to prove that neither the contraction of an AG(F)A_G(F)-contractible subgraph FF of a graph GG nor the closure operation performed on GG (if GG is claw-free) affects the value of the hamiltonian index of a graph GG

    A Decision Method for Online Purchases Considering Dynamic Information Preference Based on Sentiment Orientation Classification and Discrete DIFWA Operators

    Get PDF
    © 2013 IEEE. Online reviews are crucial for evaluating product features and supporting consumers' purchase decisions. However, as a result of online buying behaviors, consumer habits, and discrete dynamic distribution characteristics of online reviews, and consumers typically randomly choose a limited number of reviews from discrete time frames among all reviews and give more weight to recent review information and less weight to earlier information to support their online purchase decisions; moreover, existing studies have ignored the discrete random dynamic characteristics and dynamic information preferences of consumers. To address this issue, this paper proposes a method based on sentiment orientation classification and discrete DIFWA (DDIFWA) operators for online purchase decisions considering dynamic information preferences. In this method, we transformed review texts from original discrete time slices to discrete random features, extracted product features based on the constructed feature and sentiment dictionaries, and matched pairs of features and sentiment phrases in the dictionaries. We subsequently employed three types of semantic orientation by defining semantic rules to extract the product features of each review. Of note, the semantic orientations were transformed from discrete time to semantic intuitionistic fuzzy numbers and semantic intuitionistic fuzzy information matrixes. Furthermore, we proposed two DDIFWA operators to aggregate the dynamic semantic intuitionistic fuzzy information. Specifically, we obtained the rankings of alternative products and their features to support consumers' purchase decisions using the intuitionistic fuzzy scoring function and the 'vertical projection distance' method. Finally, comparisons and experiments are provided to demonstrate the plausibility of our methods

    Experimental verification of a Jarzynski-related information-theoretic equality using a single trapped ion

    Full text link
    Most non-equilibrium processes in thermodynamics are quantified only by inequalities, however the Jarzynski relation presents a remarkably simple and general equality relating non-equilibrium quantities with the equilibrium free energy, and this equality holds in both classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in quantum regime using a single ultracold 40Ca+^{40}Ca^{+} ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the non-equilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.Comment: 2 figure

    Structure and stability of quasi-two-dimensional boson-fermion mixtures with vortex-antivortex superposed states

    Full text link
    We investigate the equilibrium properties of a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex-antivortex superposed state (VAVSS) using a quantum-hydrodynamic model. We show that, depending on the choice of parameters, the DBFM with a VAVSS can exhibit rich phase structures. For repulsive boson-fermion (BF) interaction, the Bose-Einstein condensate (BEC) may constitute a petal-shaped "core" inside the honeycomb-like fermionic component, or a ring-shaped joint "shell" around the onion-like fermionic cloud, or multiple segregated "islands" embedded in the disc-shaped Fermi gas. For attractive BF interaction just below the threshold for collapse, an almost complete mixing between the bosonic and fermionic components is formed, where the fermionic component tends to mimic a bosonic VAVSS. The influence of an anharmonic trap on the density distributions of the DBFM with a bosonic VAVSS is discussed. In addition, a stability region for different cases of DBFM (without vortex, with a bosonic vortex, and with a bosonic VAVSS) with specific parameters is given.Comment: 8 pages,5 figure

    KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.

    Get PDF
    KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations

    Bridging-nitrogen defects modified graphitic carbon nitride nanosheet for boosted photocatalytic hydrogen production

    Get PDF
    Reinforcing the visible photon absorption and charge separation are the key issues to maximize the photocatalytic performance of graphitic carbon nitride. Herein, holey bridging-nitrogen-defected graphitic carbon nitride nanosheets were prepared through solid-state copolymerization and subsequently thermal annealing with melamine and hexamethylenetetramine as the precursors. Numerous pores and bridging nitrogen defects that embedded into the thin-layer framework were evidenced through comprehensive characterization. The synthesized textural and electronic structure enables the significant improvement of photocatalytic hydrogen production, with the optimized sample of D-CNNS(0.3) representing a hydrogen evolution rate of 2497.1 μmol∙g−1∙h−1 under visible light irradiation (λ > 420 nm). This is about 10.4 and 41.1 folds improvement compared with pristine nanosheets and bulk carbon nitride, respectively. Both experimental and theoretical results demonstrate the bridging nitrogen defects are beneficial to enhance photoabsorption, promote charge separation and transfer. Together with the enlarged surface area, the optimized nanosheet sample shows a dramatically improved quantum yield in visible region

    The shock-induced chemical reaction behaviour of Al/Ni composites by cold rolling and powder compaction

    Get PDF
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Al/Ni composites are typical structural energetic materials, which have dual functions of structural and energetic characteristics. In order to investigate the influence of manufacturing methods on shock-induced chemical reaction (SICR) behaviour of Al/Ni composites, Al/Ni multi-layered composites with 3–5 cold-rolling passes and Al/Ni powder composites were obtained. Microstructural observation using scanning electron microscopy (SEM) and two-step impact initiation experiments were performed on the four Al/Ni composites. Furthermore, mesoscale simulations, through importing SEM images into the finite element analysis to reflect the real microstructures of the composites, were performed to analyse the particle deformation and temperature rise under shock compression conditions. The experimental results showed the distinct differences on the SICR characteristics among the four Al/Ni composites (i.e. by 3, 4 and 5 cold-rolling passes and powder compaction). The manufacturing methods provided the control of the particle sizes, particle distribution and the content of the interfacial intermetallics at scale of different microstructures, which ultimately affected the temperature distribution, as well as the contact between Al and Ni in Al/Ni composites under shock loading. As a result, the Al/Ni powder composites showed the highest energy release capacity among the four composites, while the energy release capability of Al/Ni multi-layered composites decreased with the growth of rolling passes
    corecore