8,693 research outputs found

    Embedding Retrieval of Articulated Geometry Models

    Get PDF

    High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213

    Get PDF
    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises with a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap

    Short-range cluster spin glass near optimal superconductivity in BaFe2x_{2-x}Nix_{x}As2_{2}

    Get PDF
    High-temperature superconductivity in iron pnictides occurs when electrons are doped into their antiferromagnetic (AF) parent compounds. In addition to inducing superconductivity, electron-doping also changes the static commensurate AF order in the undoped parent compounds into short-range incommensurate AF order near optimal superconductivity. Here we use neutron scattering to demonstrate that the incommensurate AF order in BaFe2x_{2-x}Nix_{x}As2_{2} is not a spin-density-wave arising from the itinerant electrons in nested Fermi surfaces, but consistent with a cluster spin glass in the matrix of the superconducting phase. Therefore, optimal superconductivity in iron pnictides coexists and competes with a mesoscopically separated cluster spin glass phase, much different from the homogeneous coexisting AF and superconducting phases in the underdoped regime.Comment: 4 figure

    The X-ray modulation of PSR J2032+4127/MT91 213 during the Periastron Passage in 2017

    Get PDF
    We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area Telescope (Fermi-LAT), and Karl G. Jansky Very Large Array (VLA) observations of the gamma-ray binary PSR J2032+4127/MT91 213, of which the periastron passage has just occurred in November 2017. In the Swift X-ray light curve, the flux was steadily increasing before mid-October 2017, however, a sharp X-ray dip on a weekly time-scale is seen during the periastron passage, followed by a post-periastron X-ray flare lasting for ~20 days. We suggest that the X-ray dip is caused by (i) an increase of the magnetization parameter at the shock, and (ii) the suppression due to the Doppler boosting effect. The 20-day post-periastron flare could be a consequence of the Be stellar disk passage by the pulsar. An orbital GeV modulation is also expected in our model, however, no significant variability is seen in the Fermi-LAT light curve. We suspect that the GeV emission resulted from the interaction between the binary's members is hidden behind the bright magnetospheric emission of the pulsar. Pulsar gating technique would be useful to remove the magnetospheric emission and recover the predicted GeV modulation, if an accurate radio timing solution over the periastron passage is provided in the future.Comment: 6 pages, including 2 figures. Accepted for publication in Ap

    Division of labour and the evolution of multicellularity

    Full text link
    Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level due to mechanisms present in unicellular ancestors and does not require any genetic pre-disposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, and in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modeled as evolution of a hereditary parameter, the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily due to the fitness advantage generated by the division of labour between cells in an aggregate.Comment: 28 pages, 2 figure

    Optimal location of tsunami warning buoys and sea level monitoring stations in the mediterranean sea

    Get PDF
    The present study determines the optimal location of detection components of a tsunami warning system in the Mediterranean region given the existing and planned infrastructure. Specifically, we examine the locations of existing tsunameters DART buoys and coastal sea-level monitoring stations to see if additional buoys and stations will improve the proportion of the coastal population that may receive a warning ensuring a timely response. A spreadsheet model is used to examine this issue. Based on the historical record of tsunamis and assuming international cooperation in tsunami detection, it is demonstrated that the existing network of sea level stations and tsunameters enable around ninety percent of the coastal population of the Mediterranean Sea to receive a 15 minute warning. Improvement in this result can be achieved through investment in additional real-time, coastal, sea level monitoring stations. This work was undertaken as a final year undergraduate research project

    Multi-cell soft errors at the 16-nm FinFET technology node

    Get PDF
    corecore