60,454 research outputs found

    Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks

    Full text link
    While the use of bottom-up local operators in convolutional neural networks (CNNs) matches well some of the statistics of natural images, it may also prevent such models from capturing contextual long-range feature interactions. In this work, we propose a simple, lightweight approach for better context exploitation in CNNs. We do so by introducing a pair of operators: gather, which efficiently aggregates feature responses from a large spatial extent, and excite, which redistributes the pooled information to local features. The operators are cheap, both in terms of number of added parameters and computational complexity, and can be integrated directly in existing architectures to improve their performance. Experiments on several datasets show that gather-excite can bring benefits comparable to increasing the depth of a CNN at a fraction of the cost. For example, we find ResNet-50 with gather-excite operators is able to outperform its 101-layer counterpart on ImageNet with no additional learnable parameters. We also propose a parametric gather-excite operator pair which yields further performance gains, relate it to the recently-introduced Squeeze-and-Excitation Networks, and analyse the effects of these changes to the CNN feature activation statistics.Comment: NeurIPS 201

    Spin Response and Neutrino Emissivity of Dense Neutron Matter

    Full text link
    We study the spin response of cold dense neutron matter in the limit of zero momentum transfer, and show that the frequency dependence of the long-wavelength spin response is well constrained by sum-rules and the asymptotic behavior of the two-particle response at high frequency. The sum-rules are calculated using Auxiliary Field Diffusion Monte Carlo technique and the high frequency two-particle response is calculated for several nucleon-nucleon potentials. At nuclear saturation density, the sum-rules suggest that the strength of the spin response peaks at ω≃\omega \simeq 40--60 MeV, decays rapidly for ω≥\omega \geq 100 MeV, and has a sizable strength below 40 MeV. This strength at relatively low energy may lead to enhanced neutrino production rates in dense neutron-rich matter at temperatures of relevance to core-collapse supernova.Comment: 11 pages, 4 figures. Minor change. Published versio

    The spectral energy distribution of galaxies at z > 2.5: Implications from the Herschel/SPIRE color-color diagram

    Full text link
    We use the Herschel SPIRE color-color diagram to study the spectral energy distribution (SED) and the redshift estimation of high-z galaxies. We compiled a sample of 57 galaxies with spectroscopically confirmed redshifts and SPIRE detections in all three bands at z=2.5−6.4z=2.5-6.4, and compared their average SPIRE colors with SED templates from local and high-z libraries. We find that local SEDs are inconsistent with high-z observations. The local calibrations of the parameters need to be adjusted to describe the average colors of high-z galaxies. For high-z libraries, the templates with an evolution from z=0 to 3 can well describe the average colors of the observations at high redshift. Using these templates, we defined color cuts to divide the SPIRE color-color diagram into different regions with different mean redshifts. We tested this method and two other color cut methods using a large sample of 783 Herschel-selected galaxies, and find that although these methods can separate the sample into populations with different mean redshifts, the dispersion of redshifts in each population is considerably large. Additional information is needed for better sampling.Comment: 17 pages, 14 figures, accepted for publication in A&

    Evaluation of small area crop estimation techniques using LANDSAT- and ground-derived data

    Get PDF
    Studies completed in fiscal year 1981 in support of the clustering/classification and preprocessing activities of the Domestic Crops and Land Cover project. The theme throughout the study was the improvement of subanalysis district (usually county level) crop hectarage estimates, as reflected in the following three objectives: (1) to evaluate the current U.S. Department of Agriculture Statistical Reporting Service regression approach to crop area estimation as applied to the problem of obtaining subanalysis district estimates; (2) to develop and test alternative approaches to subanalysis district estimation; and (3) to develop and test preprocessing techniques for use in improving subanalysis district estimates

    Nonperturbative signatures in pair production for general elliptic polarization fields

    Full text link
    The momentum signatures in nonperturbative multiphoton pair production for general elliptic polarization electric fields are investigated by employing the real-time Dirac-Heisenberg-Wigner formalism. For a linearly polarized electric field we find that the positions of the nodes in momenta spectra of created pairs depend only on the electric field frequency. The polarization of external fields could not only change the node structures or even make the nodes disappear but also change the thresholds of pair production. The momentum signatures associated to the node positions in which the even-number-photon pair creation process is forbid could be used to distinguish the orbital angular momentum of created pairs on the momenta spectra. These distinguishable momentum signatures could be relevant for providing the output information of created particles and also the input information of ultrashort laser pulses.Comment: 8 pages, 4 figures, submitted to Europhysics Letter

    Electroweak Theory Without Higgs Bosons

    Full text link
    A perturbative SU(2)_L X U(1)_Y electroweak theory containing W, Z, photon, ghost, lepton and quark fields, but no Higgs or other fields, gives masses to W, Z and the non-neutrino fermions by means of an unconventional choice for the unperturbed Lagrangian and a novel method of renormalisation. The renormalisation extends to all orders. The masses emerge on renormalisation to one loop. To one loop the neutrinos are massless, the A -> Z transition drops out of the theory, the d quark is unstable and S-matrix elements are independent of the gauge parameter xi.Comment: 27 pages, LaTex, no figures; revised for publication; accepted by Int. J. Mod. Phys. A; includes biographical note on A. F. Nicholso
    • …
    corecore