1,921 research outputs found

    Design and Development of a SNAP-8 Mercury Pump Motor Assembly

    Get PDF
    Design and performance of mercury pump motor for SNAP 8 electrical generato

    Photon Diffusion in Microscale Solids

    Full text link
    This paper presents a theoretical and experimental investigation of photon diffusion in highly absorbing microscale graphite. An Nd:YAG continuous wave (CW) laser is used to heat the graphite samples with thicknesses of 40 microns and 100 microns. Optical intensities of 10 kW/cm^2 and 20 kW/cm^2 are used in laser heating. The graphite samples are heated to temperatures of thousands of kelvins within milliseconds, which are recorded by a 2-color, high-speed pyrometer. To compare the observed temperatures, the differential equation of heat conduction is solved across the samples with proper initial and boundary conditions. In addition to lattice vibrations, photon diffusion is incorporated into the analytical model of thermal conductivity for solving the heat equation. The numerical simulations showed close matching between experiment and theory only when including the photon diffusion equations and existing material properties data found in the previously published works with no fitting constants. The results indicate that the commonly-overlooked mechanism of photon diffusion dominates the heat transfer of many microscale structures near their evaporation temperatures. In addition, the treatment explains the discrepancies between thermal conductivity measurements and theory that were previously described in the scientific literature.Comment: 8 pages, 7 figures, (N.B. there is a typo and minor correction in Table 1 and References in the online version of the journal, corrected and highlighted in this PDF

    Design of a pulse power supply unit for micro-ECM

    Get PDF
    Electrochemical micro-machining (μECM) requires a particular pulse power supply unit (PSU) to be developed in order to achieve desired machining performance. This paper summarises the development of a pulse PSU meeting the requirements of μECM. The pulse power supply provides tens of nanosecond pulse duration, positive and negative bias voltages and a polarity switching functionality. It fulfils the needs for tool preparation with reversed pulsed ECM on the machine. Moreover, the PSU is equipped with an ultrafast overcurrent protection which prevents the tool electrode from being damaged in case of short circuits. The developed pulse PSU was used to fabricate micro-tools out of 170 μm WC-Co alloy shafts via micro-electrochemical turning and drill deep holes via μECM in a disk made of 18NiCr6. The electrolyte used for both processes was a mixture of sulphuric acid and NaNO3 aqueous solutions.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMP-ICT-FoF-285614

    Reduced neonatal regulatory T cell response to microbial stimuli associates with subsequent eczema in high risk infants

    Get PDF
    Background: Regulatory T cells (Treg) play an essential role in early immune programming and shaping the immune response towards a pro‐allergic or tolerant state. We evaluated cord blood Treg and cytokine responses to microbial and non‐microbial stimuli in infants at high risk of allergic disease and their associations with development of allergic disease in the first year. Methods: Cord blood mononuclear cells from 72 neonates were cultured with toll‐like receptors (TLR2) ligands: lipoteichoic acid (LTA) and heat‐killed Lactobacillus rhamnosus GG (HKL); TLR4 ligand: lipopolysaccharide (LPS); ovalbumin (OVA); anti‐CD3; or media for 48 h. Treg numbers and Treg cytokines were assessed in relation to allergic disease outcomes during the first year of life (eczema and atopic sensitization). Results: Infants with eczema (n = 24) had reduced percentages of FoxP3hiCD25hi Treg in LTA (p = 0.01, adj p = 0.005) and HKL (p = 0.04, adj p = 0.02) stimulated cultures as well as reduced IL‐10 (p = 0.01) production following HKL stimulation compared to those without eczema (n = 48). No differences in Treg or cytokine responses to LPS, OVA or anti‐CD3 were seen. Infants who developed sensitization had lower percentages of Treg following TLR2 stimulation (but not other stimuli) compared to non‐sensitized infants. Conclusions: High‐risk children who develop allergic disease in the first year of life have deficient Treg responses to microbial stimuli but not allergen from the time of birth, which may contribute to failure of immune tolerance development in infancy

    The views of older women towards mammographic screening: a qualitative and quantitative study

    Get PDF
    Purpose: Mammographic screening has improved breast cancer survival in the screened age group. This improved survival has not been seen in older women (>70 years) where screening uptake is low. This study explores the views, knowledge and attitudes of older women towards screening. Methods: Women (>70) were interviewed about breast screening. Interview findings informed the development of a questionnaire which was sent to 1000 women (>70) to quantify their views regarding screening. Results: Twenty-six women were interviewed and a questionnaire designed. The questionnaire response rate was 48.3% (479/992). Over half (52.9%, 241/456) of respondents were unaware they could request mammography by voluntary self-referral and were unaware of how to arrange this. Most (81.5% 383/470) had not attended breast screening since turning 70. Most (75.6%, 343/454) felt screening was beneficial and would attend if invited. Most, (90.1%, 412/457) felt screening should be offered to all women regardless of age or health. Conclusions: There is a lack of knowledge about screening in older women. The majority felt that invitation to screening should be extended to the older age group regardless of age or health. The current under-utilised system of voluntary self referral is not supported by older women

    Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential

    Full text link
    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non- Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and ex- plore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase tran- sition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops
    corecore