1,305 research outputs found

    Paired atom laser beams created via four-wave mixing

    Full text link
    A method to create paired atom laser beams from a metastable helium atom laser via four-wave mixing is demonstrated. Radio frequency outcoupling is used to extract atoms from a Bose Einstein condensate near the center of the condensate and initiate scattering between trapped and untrapped atoms. The unequal strengths of the interactions for different internal states allows an energy-momentum resonance which leads to the creation of pairs of atoms scattered from the zero-velocity condensate. The resulting scattered beams are well separated from the main atom laser in the 2-dimensional transverse atom laser profile. Numerical simulations of the system are in good agreement with the observed atom laser spatial profiles, and indicate that the scattered beams are generated by a four-wave mixing process, suggesting that the beams are correlated.Comment: 5 pages, 3 figure

    Cnidaria, Scleractinia, Siderastreidae, Siderastrea siderea (Ellis and Solander, 1786): Hartt Expedition and the first record of a Caribbean siderastreid in tropical Southwestern Atlantic

    Get PDF
    Samples of Siderastrea collected by the geologist C. F. Hartt during expedition to Brazil (19th century), anddeposited at the National Museum of the Natural History, Smithsonian Institution, have been re-examined. Taxonomicalanalyses resulted in the identification of a colony of S. siderea from offshore northern Bahia state. Following recentstudies, the occurrence of Caribbean siderastreids to western South Atlantic provides new criteria to assess intra- andinterpopulational morphological variation of the endemic S. stellata, refuting historical trends of synonymizations possiblybiased by long-term taxonomical misunderstandings

    A multibeam atom laser: coherent atom beam splitting from a single far detuned laser

    Full text link
    We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams with slightly different momenta, resulting in multiple, nearly co-propagating, coherent beams which could be of use in interferometric experiments. The splitting process itself is a novel realization of Bragg diffraction, driven by each of the optical Raman laser beams independently. This presents a significantly simpler implementation of an atomic beam splitter, one of the main elements of coherent atom optics

    Erratum : Squeezing and entanglement delay using slow light

    Get PDF
    An inconsistency was found in the equations used to calculate the variance of the quadrature fluctuations of a field propagating through a medium demonstrating electromagnetically induced transparency (EIT). The decoherence term used in our original paper introduces inconsistency under weak probe approximation. In this erratum we give the Bloch equations with the correct dephasing terms. The conclusions of the original paper remain the same. Both entanglement and squeezing can be delayed and preserved using EIT without adding noise when the decoherence rate is small.Comment: 1 page, no figur

    Can optical squeezing be generated via polarization self-rotation in a thermal vapour cell?

    Get PDF
    The traversal of an elliptically polarized optical field through a thermal vapour cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. In this paper, we show results of the characterization of PSR in isotopically enhanced Rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapour overwhelms the observation of squeezing. We present a theory that contains atomic noise terms and show that a null result in squeezing is consistent with this theory.Comment: 10 pages, 11 figures, submitted to PRA. Please email author for a PDF file if the article does not appear properl

    Angle resolved photoelectron spectroscopy of two-color XUV-NIR ionization with polarization control

    Get PDF
    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime

    Attosecond electron spectroscopy using a novel interferometric pump-probe technique

    Get PDF
    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original attosecond pulse. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multi-path interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the attosecond pulse duration.Comment: 5 pages, 4 figure

    Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions

    Get PDF
    We prove strong convergence of conforming finite element approximations to the stationary Joule heating problem with mixed boundary conditions on Lipschitz domains in three spatial dimensions. We show optimal global regularity estimates on creased domains and prove a priori and a posteriori bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error analysis, a priori error analysis, finite element metho
    • …
    corecore