10,817 research outputs found

    Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    Get PDF
    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models.status: publishe

    Cross-disciplinary detection and analysis of network motifs

    Get PDF
    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein-protein interaction network, primary school contact network, Zachary’s karate club network, and co-purchase of political books network can be classified into a superfamily

    Study of cavernous underground conduits in Nam La (Northwest Vietnam) by an integrative approach

    Full text link
    This paper presents the result of an investigation of underground conduits, which connect the swallow holes and the resurgence of a blind river in the tropical, highly karstified limestone Nam La catchment in the NW of Vietnam. The Nam La River disappears underground in several swallow holes near the outlet of the catchment. In the rainy season this results in flooding upstream of the sinkholes. A hypothesis is that the Nam La River resurges at a large cavern spring 4.5 km east of the catchment outlet. A multi-thematic study of the possible connections between the swallow holes and the resurgence was carried out to investigate the geological structure, tectonics, cave structure analysis and discharge time series. The existence of the underground conduits was also tested and proven by tracer experiments. On the basis of a lineament analysis the location of the underground conduits were predicted. A remote sensing derived lineament-length density map was used to track routes from the swallow holes to the resurgence, having the shortest length but highest lineament density. This resulted in a plan-view prediction of underground conduits that matches with the cave and fault development. The functioning of the conduits was further explained by analysing flooding records of a nearby doline, which turns out to act as a temporary storage reservoir mitigating flooding of the catchment outlet area

    Connection Conditions and the Spectral Family under Singular Potentials

    Get PDF
    To describe a quantum system whose potential is divergent at one point, one must provide proper connection conditions for the wave functions at the singularity. Generalizing the scheme used for point interactions in one dimension, we present a set of connection conditions which are well-defined even if the wave functions and/or their derivatives are divergent at the singularity. Our generalized scheme covers the entire U(2) family of quantizations (self-adjoint Hamiltonians) admitted for the singular system. We use this scheme to examine the spectra of the Coulomb potential V(x)=e2/xV(x) = - e^2 / | x | and the harmonic oscillator with square inverse potential V(x)=(mω2/2)x2+g/x2V(x) = (m \omega^2 / 2) x^2 + g/x^2, and thereby provide a general perspective for these models which have previously been treated with restrictive connection conditions resulting in conflicting spectra. We further show that, for any parity invariant singular potentials V(x)=V(x)V(-x) = V(x), the spectrum is determined solely by the eigenvalues of the characteristic matrix UU(2)U \in U(2).Comment: TeX, 18 page

    Further investigation on chaos of real digital filters

    Get PDF
    This Letter displays, via the numerical simulation of a real digital filter, that a finite-state machine may behave in a near-chaotic way even when its corresponding infinite-state machine does not exhibit chaotic behavior
    corecore