58,626 research outputs found
Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV
The near-side ridge structure in the (Delta phi)-(Delta eta) correlation
observed by the CMS Collaboration for pp collisions at 7 TeV at LHC can be
explained by the momentum kick model in which the ridge particles are medium
partons that suffer a collision with the jet and acquire a momentum kick along
the jet direction. Similar to the early medium parton momentum distribution
obtained in previous analysis for nucleus-nucleus collisions at 0.2 TeV, the
early medium parton momentum distribution in pp collisions at 7 TeV exhibits a
rapidity plateau as arising from particle production in a flux tube.Comment: Talk presented at Workshop on High-pT Probes of High-Density QCD at
the LHC, Palaiseau, May 30-June2, 201
Analysis and computer programs to calculate acoustic wave properties of baffled chambers
Analytical methods and four computer programs have been developed for calculating wave motion in closed, baffled chambers with rigid and non-rigid boundaries. Application of these methods to design of injector-face baffles in liquid propellant engines will provide significant insight into effects of baffles on combustion stability
Reestimation of the production spectra of cosmic ray secondary positrons and electrons in the ISM
A detailed calculation of the production spectra of charged hadrons produced by interactions of cosmic rays in the interstellar medium is presented along with a thorough treatment of pion and muon decays. Newly parameterized inclusive cross sections of hadrons were used and exact kinematic limitations were taken into account. Single parametrized expressions for the production spectra of both secondary positrons and electrons in the energy range .1 to 100 GeV are presented. The results are compared with other authors' predictions. Equilibrium spectra using various models are also presented
Surface roughness influence on the quality factor of high frequency nanoresonators
Surface roughness influences significantly the quality factor of high
frequency nanoresonators for large frequency - relaxation times within the
non-Newtonian regime, where a purely elastic dynamics develops. It is shown
that the influence of sort wavelength roughness, which is expressed by the
roughness exponent H for the case of self-affine roughness, plays significant
role in comparison with the effect of the long wavelength roughness parameters
such as the rms roughness amplitude and the lateral roughness correlation
length. Therefore, the surface morphology can play important role in designing
high-frequency resonators operating within the non-Newtonian regime.Comment: 13 pages, 4 figures, To appear in J. Appl. Phys. (2008
Matrix Transfer Function Design for Flexible Structures: An Application
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure
Analysis of pion elliptic flows and HBT interferometry in a granular quark-gluon plasma droplet model
In many simulations of high-energy heavy-ion collisions on an event-by-event
analysis, it is known that the initial energy density distribution in the
transverse plane is highly fluctuating. Subsequent longitudinal expansion will
lead to many longitudinal tubes of quark-gluon plasma which have tendencies to
break up into many spherical droplets because of sausage instabilities. We are
therefore motivated to use a model of quark-gluon plasma granular droplets that
evolve hydrodynamically to investigate pion elliptic flows and
Hanbury-Brown-Twiss interferometry. We find that the data of pion transverse
momentum spectra, elliptic flows, and HBT radii in \sqrt{s_{NN}}=200 GeV Au +
Au collisions at RHIC can be described well by an expanding source of granular
droplets with an anisotropic velocity distribution.Comment: 9 pages, 6 figures, in Late
Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective
Inference and optimization of real-value edge variables in sparse graphs are
studied using the Bethe approximation and replica method of statistical
physics. Equilibrium states of general energy functions involving a large set
of real edge-variables that interact at the network nodes are obtained in
various cases. When applied to the representative problem of network resource
allocation, efficient distributed algorithms are also devised. Scaling
properties with respect to the network connectivity and the resource
availability are found, and links to probabilistic Bayesian approximation
methods are established. Different cost measures are considered and algorithmic
solutions in the various cases are devised and examined numerically. Simulation
results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated,
Figs. 1 to 3 replace
Quarkonia and Quark Drip Lines in Quark-Gluon Plasma
We extract the - potential by using the thermodynamic quantities
obtained in lattice gauge calculations. The potential is tested and found to
give dissociation temperatures that agree well with those from lattice gauge
spectral function analysis. Using such a - potential, we examine the
quarkonium states in a quark-gluon plasma and determine the `quark drip lines'
which separate the region of bound color-singlet states from the
unbound region. The characteristics of the quark drip lines severely limit the
region of possible bound states with light quarks to temperatures
close to the phase transition temperature. Bound quarkonia with light quarks
may exist very near the phase transition temperature if their effective quark
mass is of the order of 300-400 MeV and higher.Comment: 24 pages, 13 figures, in LaTe
Azimuthal Asymmetry of Direct Photons in High Energy Nuclear Collisions
We show that a sizeable azimuthal asymmetry, characterized by a coefficient
v_2, is to be expected for direct photons produced in non-central high energy
nuclear collisions. This signal is generated by photons radiated by jets
interacting with the surrounding hot plasma. The anisotropy is out of phase by
an angle with respect to that associated with the elliptic anisotropy
of hadrons, leading to negative values of v_2. Such an asymmetry, if observed,
could be a signature for the presence of a quark gluon plasma and would
establish the importance of jet-plasma interactions as a source of
electromagnetic radiation.Comment: New title. Final versio
- …